Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrloopvtx.g |
⊢ 𝐺 = 〈 𝑉 , { 〈 𝐴 , { 𝑁 } 〉 } 〉 |
2 |
1
|
uspgrloopvtx |
⊢ ( 𝑉 ∈ 𝑊 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
4 |
|
simp2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → 𝐴 ∈ 𝑋 ) |
5 |
|
simp3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) |
6 |
1
|
uspgrloopiedg |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
8 |
3 4 5 7
|
1loopgrnb0 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |