Metamath Proof Explorer


Theorem uspgrloopvtx

Description: The set of vertices in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop ). (Contributed by AV, 17-Dec-2020)

Ref Expression
Hypothesis uspgrloopvtx.g 𝐺 = ⟨ 𝑉 , { ⟨ 𝐴 , { 𝑁 } ⟩ } ⟩
Assertion uspgrloopvtx ( 𝑉𝑊 → ( Vtx ‘ 𝐺 ) = 𝑉 )

Proof

Step Hyp Ref Expression
1 uspgrloopvtx.g 𝐺 = ⟨ 𝑉 , { ⟨ 𝐴 , { 𝑁 } ⟩ } ⟩
2 1 fveq2i ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝑁 } ⟩ } ⟩ )
3 snex { ⟨ 𝐴 , { 𝑁 } ⟩ } ∈ V
4 opvtxfv ( ( 𝑉𝑊 ∧ { ⟨ 𝐴 , { 𝑁 } ⟩ } ∈ V ) → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝑁 } ⟩ } ⟩ ) = 𝑉 )
5 3 4 mpan2 ( 𝑉𝑊 → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝑁 } ⟩ } ⟩ ) = 𝑉 )
6 2 5 syl5eq ( 𝑉𝑊 → ( Vtx ‘ 𝐺 ) = 𝑉 )