Metamath Proof Explorer


Theorem uspgrun

Description: The union U of two simple pseudographs G and H with the same vertex set V is a pseudograph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 16-Oct-2020)

Ref Expression
Hypotheses uspgrun.g ( 𝜑𝐺 ∈ USPGraph )
uspgrun.h ( 𝜑𝐻 ∈ USPGraph )
uspgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
uspgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
uspgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
uspgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
uspgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
uspgrun.u ( 𝜑𝑈𝑊 )
uspgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
uspgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
Assertion uspgrun ( 𝜑𝑈 ∈ UPGraph )

Proof

Step Hyp Ref Expression
1 uspgrun.g ( 𝜑𝐺 ∈ USPGraph )
2 uspgrun.h ( 𝜑𝐻 ∈ USPGraph )
3 uspgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
4 uspgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
5 uspgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
6 uspgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
7 uspgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
8 uspgrun.u ( 𝜑𝑈𝑊 )
9 uspgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
10 uspgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
11 uspgrupgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
12 1 11 syl ( 𝜑𝐺 ∈ UPGraph )
13 uspgrupgr ( 𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph )
14 2 13 syl ( 𝜑𝐻 ∈ UPGraph )
15 12 14 3 4 5 6 7 8 9 10 upgrun ( 𝜑𝑈 ∈ UPGraph )