| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ussval.1 | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ussval.2 | ⊢ 𝑈  =  ( UnifSet ‘ 𝑊 ) | 
						
							| 3 |  | oveq2 | ⊢ ( ( 𝐵  ×  𝐵 )  =  ∪  𝑈  →  ( 𝑈  ↾t  ( 𝐵  ×  𝐵 ) )  =  ( 𝑈  ↾t  ∪  𝑈 ) ) | 
						
							| 4 |  | id | ⊢ ( ( 𝐵  ×  𝐵 )  =  ∪  𝑈  →  ( 𝐵  ×  𝐵 )  =  ∪  𝑈 ) | 
						
							| 5 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 6 | 5 5 | xpex | ⊢ ( 𝐵  ×  𝐵 )  ∈  V | 
						
							| 7 | 4 6 | eqeltrrdi | ⊢ ( ( 𝐵  ×  𝐵 )  =  ∪  𝑈  →  ∪  𝑈  ∈  V ) | 
						
							| 8 |  | uniexb | ⊢ ( 𝑈  ∈  V  ↔  ∪  𝑈  ∈  V ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ( 𝐵  ×  𝐵 )  =  ∪  𝑈  →  𝑈  ∈  V ) | 
						
							| 10 |  | eqid | ⊢ ∪  𝑈  =  ∪  𝑈 | 
						
							| 11 | 10 | restid | ⊢ ( 𝑈  ∈  V  →  ( 𝑈  ↾t  ∪  𝑈 )  =  𝑈 ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( 𝐵  ×  𝐵 )  =  ∪  𝑈  →  ( 𝑈  ↾t  ∪  𝑈 )  =  𝑈 ) | 
						
							| 13 | 3 12 | eqtr2d | ⊢ ( ( 𝐵  ×  𝐵 )  =  ∪  𝑈  →  𝑈  =  ( 𝑈  ↾t  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 14 | 1 2 | ussval | ⊢ ( 𝑈  ↾t  ( 𝐵  ×  𝐵 ) )  =  ( UnifSt ‘ 𝑊 ) | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( ( 𝐵  ×  𝐵 )  =  ∪  𝑈  →  𝑈  =  ( UnifSt ‘ 𝑊 ) ) |