Step |
Hyp |
Ref |
Expression |
1 |
|
ussval.1 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
ussval.2 |
⊢ 𝑈 = ( UnifSet ‘ 𝑊 ) |
3 |
1 1
|
xpeq12i |
⊢ ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) |
4 |
2 3
|
oveq12i |
⊢ ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( UnifSet ‘ 𝑤 ) = ( UnifSet ‘ 𝑊 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
7 |
6
|
sqxpeqd |
⊢ ( 𝑤 = 𝑊 → ( ( Base ‘ 𝑤 ) × ( Base ‘ 𝑤 ) ) = ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) |
8 |
5 7
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( UnifSet ‘ 𝑤 ) ↾t ( ( Base ‘ 𝑤 ) × ( Base ‘ 𝑤 ) ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
9 |
|
df-uss |
⊢ UnifSt = ( 𝑤 ∈ V ↦ ( ( UnifSet ‘ 𝑤 ) ↾t ( ( Base ‘ 𝑤 ) × ( Base ‘ 𝑤 ) ) ) ) |
10 |
|
ovex |
⊢ ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ V |
11 |
8 9 10
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( UnifSt ‘ 𝑊 ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
12 |
4 11
|
eqtr4id |
⊢ ( 𝑊 ∈ V → ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( UnifSt ‘ 𝑊 ) ) |
13 |
|
0rest |
⊢ ( ∅ ↾t ( 𝐵 × 𝐵 ) ) = ∅ |
14 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( UnifSet ‘ 𝑊 ) = ∅ ) |
15 |
2 14
|
syl5eq |
⊢ ( ¬ 𝑊 ∈ V → 𝑈 = ∅ ) |
16 |
15
|
oveq1d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( ∅ ↾t ( 𝐵 × 𝐵 ) ) ) |
17 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( UnifSt ‘ 𝑊 ) = ∅ ) |
18 |
13 16 17
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( UnifSt ‘ 𝑊 ) ) |
19 |
12 18
|
pm2.61i |
⊢ ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( UnifSt ‘ 𝑊 ) |