| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ussval.1 | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ussval.2 | ⊢ 𝑈  =  ( UnifSet ‘ 𝑊 ) | 
						
							| 3 | 1 1 | xpeq12i | ⊢ ( 𝐵  ×  𝐵 )  =  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) | 
						
							| 4 | 2 3 | oveq12i | ⊢ ( 𝑈  ↾t  ( 𝐵  ×  𝐵 ) )  =  ( ( UnifSet ‘ 𝑊 )  ↾t  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( UnifSet ‘ 𝑤 )  =  ( UnifSet ‘ 𝑊 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 7 | 6 | sqxpeqd | ⊢ ( 𝑤  =  𝑊  →  ( ( Base ‘ 𝑤 )  ×  ( Base ‘ 𝑤 ) )  =  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) | 
						
							| 8 | 5 7 | oveq12d | ⊢ ( 𝑤  =  𝑊  →  ( ( UnifSet ‘ 𝑤 )  ↾t  ( ( Base ‘ 𝑤 )  ×  ( Base ‘ 𝑤 ) ) )  =  ( ( UnifSet ‘ 𝑊 )  ↾t  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 9 |  | df-uss | ⊢ UnifSt  =  ( 𝑤  ∈  V  ↦  ( ( UnifSet ‘ 𝑤 )  ↾t  ( ( Base ‘ 𝑤 )  ×  ( Base ‘ 𝑤 ) ) ) ) | 
						
							| 10 |  | ovex | ⊢ ( ( UnifSet ‘ 𝑊 )  ↾t  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  ∈  V | 
						
							| 11 | 8 9 10 | fvmpt | ⊢ ( 𝑊  ∈  V  →  ( UnifSt ‘ 𝑊 )  =  ( ( UnifSet ‘ 𝑊 )  ↾t  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 12 | 4 11 | eqtr4id | ⊢ ( 𝑊  ∈  V  →  ( 𝑈  ↾t  ( 𝐵  ×  𝐵 ) )  =  ( UnifSt ‘ 𝑊 ) ) | 
						
							| 13 |  | 0rest | ⊢ ( ∅  ↾t  ( 𝐵  ×  𝐵 ) )  =  ∅ | 
						
							| 14 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( UnifSet ‘ 𝑊 )  =  ∅ ) | 
						
							| 15 | 2 14 | eqtrid | ⊢ ( ¬  𝑊  ∈  V  →  𝑈  =  ∅ ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( ¬  𝑊  ∈  V  →  ( 𝑈  ↾t  ( 𝐵  ×  𝐵 ) )  =  ( ∅  ↾t  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 17 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( UnifSt ‘ 𝑊 )  =  ∅ ) | 
						
							| 18 | 13 16 17 | 3eqtr4a | ⊢ ( ¬  𝑊  ∈  V  →  ( 𝑈  ↾t  ( 𝐵  ×  𝐵 ) )  =  ( UnifSt ‘ 𝑊 ) ) | 
						
							| 19 | 12 18 | pm2.61i | ⊢ ( 𝑈  ↾t  ( 𝐵  ×  𝐵 ) )  =  ( UnifSt ‘ 𝑊 ) |