| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ustbas.1 | ⊢ 𝑋  =  dom  ∪  𝑈 | 
						
							| 2 |  | ustfn | ⊢ UnifOn  Fn  V | 
						
							| 3 |  | fnfun | ⊢ ( UnifOn  Fn  V  →  Fun  UnifOn ) | 
						
							| 4 |  | elunirn | ⊢ ( Fun  UnifOn  →  ( 𝑈  ∈  ∪  ran  UnifOn  ↔  ∃ 𝑥  ∈  dom  UnifOn 𝑈  ∈  ( UnifOn ‘ 𝑥 ) ) ) | 
						
							| 5 | 2 3 4 | mp2b | ⊢ ( 𝑈  ∈  ∪  ran  UnifOn  ↔  ∃ 𝑥  ∈  dom  UnifOn 𝑈  ∈  ( UnifOn ‘ 𝑥 ) ) | 
						
							| 6 |  | ustbas2 | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑥 )  →  𝑥  =  dom  ∪  𝑈 ) | 
						
							| 7 | 6 1 | eqtr4di | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑥 )  →  𝑥  =  𝑋 ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑥 )  →  ( UnifOn ‘ 𝑥 )  =  ( UnifOn ‘ 𝑋 ) ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑥 )  →  ( 𝑈  ∈  ( UnifOn ‘ 𝑥 )  ↔  𝑈  ∈  ( UnifOn ‘ 𝑋 ) ) ) | 
						
							| 10 | 9 | ibi | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑥 )  →  𝑈  ∈  ( UnifOn ‘ 𝑋 ) ) | 
						
							| 11 | 10 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  dom  UnifOn 𝑈  ∈  ( UnifOn ‘ 𝑥 )  →  𝑈  ∈  ( UnifOn ‘ 𝑋 ) ) | 
						
							| 12 | 5 11 | sylbi | ⊢ ( 𝑈  ∈  ∪  ran  UnifOn  →  𝑈  ∈  ( UnifOn ‘ 𝑋 ) ) | 
						
							| 13 |  | elfvunirn | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  𝑈  ∈  ∪  ran  UnifOn ) | 
						
							| 14 | 12 13 | impbii | ⊢ ( 𝑈  ∈  ∪  ran  UnifOn  ↔  𝑈  ∈  ( UnifOn ‘ 𝑋 ) ) |