Step |
Hyp |
Ref |
Expression |
1 |
|
ustbas.1 |
⊢ 𝑋 = dom ∪ 𝑈 |
2 |
|
ustfn |
⊢ UnifOn Fn V |
3 |
|
fnfun |
⊢ ( UnifOn Fn V → Fun UnifOn ) |
4 |
|
elunirn |
⊢ ( Fun UnifOn → ( 𝑈 ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∈ dom UnifOn 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ) ) |
5 |
2 3 4
|
mp2b |
⊢ ( 𝑈 ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∈ dom UnifOn 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ) |
6 |
|
ustbas2 |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → 𝑥 = dom ∪ 𝑈 ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → 𝑥 = 𝑋 ) |
8 |
7
|
fveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → ( UnifOn ‘ 𝑥 ) = ( UnifOn ‘ 𝑋 ) ) |
9 |
8
|
eleq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ↔ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ) |
10 |
9
|
ibi |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
11 |
10
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ dom UnifOn 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
12 |
5 11
|
sylbi |
⊢ ( 𝑈 ∈ ∪ ran UnifOn → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
13 |
|
elrnust |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ ∪ ran UnifOn ) |
14 |
12 13
|
impbii |
⊢ ( 𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |