Step |
Hyp |
Ref |
Expression |
1 |
|
dmxpid |
⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 |
2 |
|
ustbasel |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ 𝑈 ) |
3 |
|
elssuni |
⊢ ( ( 𝑋 × 𝑋 ) ∈ 𝑈 → ( 𝑋 × 𝑋 ) ⊆ ∪ 𝑈 ) |
4 |
2 3
|
syl |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ⊆ ∪ 𝑈 ) |
5 |
|
elfvex |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) |
6 |
|
isust |
⊢ ( 𝑋 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) |
8 |
7
|
ibi |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) |
9 |
8
|
simp1d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
10 |
9
|
unissd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 ⊆ ∪ 𝒫 ( 𝑋 × 𝑋 ) ) |
11 |
|
unipw |
⊢ ∪ 𝒫 ( 𝑋 × 𝑋 ) = ( 𝑋 × 𝑋 ) |
12 |
10 11
|
sseqtrdi |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 ⊆ ( 𝑋 × 𝑋 ) ) |
13 |
4 12
|
eqssd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) = ∪ 𝑈 ) |
14 |
13
|
dmeqd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → dom ( 𝑋 × 𝑋 ) = dom ∪ 𝑈 ) |
15 |
1 14
|
eqtr3id |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom ∪ 𝑈 ) |