| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmxpid | ⊢ dom  ( 𝑋  ×  𝑋 )  =  𝑋 | 
						
							| 2 |  | ustbasel | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝑋  ×  𝑋 )  ∈  𝑈 ) | 
						
							| 3 |  | elssuni | ⊢ ( ( 𝑋  ×  𝑋 )  ∈  𝑈  →  ( 𝑋  ×  𝑋 )  ⊆  ∪  𝑈 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝑋  ×  𝑋 )  ⊆  ∪  𝑈 ) | 
						
							| 5 |  | elfvex | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  𝑋  ∈  V ) | 
						
							| 6 |  | isust | ⊢ ( 𝑋  ∈  V  →  ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ↔  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ↔  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) ) | 
						
							| 8 | 7 | ibi | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) | 
						
							| 9 | 8 | simp1d | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 ) ) | 
						
							| 10 | 9 | unissd | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ∪  𝑈  ⊆  ∪  𝒫  ( 𝑋  ×  𝑋 ) ) | 
						
							| 11 |  | unipw | ⊢ ∪  𝒫  ( 𝑋  ×  𝑋 )  =  ( 𝑋  ×  𝑋 ) | 
						
							| 12 | 10 11 | sseqtrdi | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ∪  𝑈  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 13 | 4 12 | eqssd | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝑋  ×  𝑋 )  =  ∪  𝑈 ) | 
						
							| 14 | 13 | dmeqd | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  dom  ( 𝑋  ×  𝑋 )  =  dom  ∪  𝑈 ) | 
						
							| 15 | 1 14 | eqtr3id | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  𝑋  =  dom  ∪  𝑈 ) |