Metamath Proof Explorer


Theorem ustbas2

Description: Second direction for ustbas . (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion ustbas2 ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom 𝑈 )

Proof

Step Hyp Ref Expression
1 dmxpid dom ( 𝑋 × 𝑋 ) = 𝑋
2 ustbasel ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ 𝑈 )
3 elssuni ( ( 𝑋 × 𝑋 ) ∈ 𝑈 → ( 𝑋 × 𝑋 ) ⊆ 𝑈 )
4 2 3 syl ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ⊆ 𝑈 )
5 elfvex ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V )
6 isust ( 𝑋 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) ) ) )
7 5 6 syl ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) ) ) )
8 7 ibi ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) ) )
9 8 simp1d ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) )
10 9 unissd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 𝒫 ( 𝑋 × 𝑋 ) )
11 unipw 𝒫 ( 𝑋 × 𝑋 ) = ( 𝑋 × 𝑋 )
12 10 11 sseqtrdi ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ⊆ ( 𝑋 × 𝑋 ) )
13 4 12 eqssd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) = 𝑈 )
14 13 dmeqd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → dom ( 𝑋 × 𝑋 ) = dom 𝑈 )
15 1 14 eqtr3id ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom 𝑈 )