| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvex | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  𝑋  ∈  V ) | 
						
							| 2 |  | isust | ⊢ ( 𝑋  ∈  V  →  ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ↔  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ↔  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) ) | 
						
							| 4 | 3 | ibi | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) | 
						
							| 5 | 4 | simp2d | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝑋  ×  𝑋 )  ∈  𝑈 ) |