Step |
Hyp |
Ref |
Expression |
1 |
|
elfvex |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) |
2 |
|
isust |
⊢ ( 𝑋 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) |
4 |
3
|
ibi |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) |
5 |
4
|
simp3d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) |
6 |
|
sseq1 |
⊢ ( 𝑣 = 𝑉 → ( 𝑣 ⊆ 𝑤 ↔ 𝑉 ⊆ 𝑤 ) ) |
7 |
6
|
imbi1d |
⊢ ( 𝑣 = 𝑉 → ( ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ↔ ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑣 = 𝑉 → ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ↔ ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) ) |
9 |
|
ineq1 |
⊢ ( 𝑣 = 𝑉 → ( 𝑣 ∩ 𝑤 ) = ( 𝑉 ∩ 𝑤 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑣 = 𝑉 → ( ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ↔ ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑣 = 𝑉 → ( ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ↔ ∀ 𝑤 ∈ 𝑈 ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ) ) |
12 |
|
sseq2 |
⊢ ( 𝑣 = 𝑉 → ( ( I ↾ 𝑋 ) ⊆ 𝑣 ↔ ( I ↾ 𝑋 ) ⊆ 𝑉 ) ) |
13 |
|
cnveq |
⊢ ( 𝑣 = 𝑉 → ◡ 𝑣 = ◡ 𝑉 ) |
14 |
13
|
eleq1d |
⊢ ( 𝑣 = 𝑉 → ( ◡ 𝑣 ∈ 𝑈 ↔ ◡ 𝑉 ∈ 𝑈 ) ) |
15 |
|
sseq2 |
⊢ ( 𝑣 = 𝑉 → ( ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ↔ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑣 = 𝑉 → ( ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ↔ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
17 |
12 14 16
|
3anbi123d |
⊢ ( 𝑣 = 𝑉 → ( ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ↔ ( ( I ↾ 𝑋 ) ⊆ 𝑉 ∧ ◡ 𝑉 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) |
18 |
8 11 17
|
3anbi123d |
⊢ ( 𝑣 = 𝑉 → ( ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑉 ∧ ◡ 𝑉 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) ) |
19 |
18
|
rspcv |
⊢ ( 𝑉 ∈ 𝑈 → ( ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑉 ∧ ◡ 𝑉 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) ) |
20 |
5 19
|
mpan9 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑉 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑉 ∧ ◡ 𝑉 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) |
21 |
20
|
simp3d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( ( I ↾ 𝑋 ) ⊆ 𝑉 ∧ ◡ 𝑉 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
22 |
21
|
simp1d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑉 ) |