| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝑉  ∈  𝑈  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑋 )  | 
						
						
							| 2 | 
							
								
							 | 
							ustdiag | 
							⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝑉  ∈  𝑈 )  →  (  I   ↾  𝑋 )  ⊆  𝑉 )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adant3 | 
							⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝑉  ∈  𝑈  ∧  𝐴  ∈  𝑋 )  →  (  I   ↾  𝑋 )  ⊆  𝑉 )  | 
						
						
							| 4 | 
							
								
							 | 
							opelidres | 
							⊢ ( 𝐴  ∈  𝑋  →  ( 〈 𝐴 ,  𝐴 〉  ∈  (  I   ↾  𝑋 )  ↔  𝐴  ∈  𝑋 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ibir | 
							⊢ ( 𝐴  ∈  𝑋  →  〈 𝐴 ,  𝐴 〉  ∈  (  I   ↾  𝑋 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝑉  ∈  𝑈  ∧  𝐴  ∈  𝑋 )  →  〈 𝐴 ,  𝐴 〉  ∈  (  I   ↾  𝑋 ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							sseldd | 
							⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝑉  ∈  𝑈  ∧  𝐴  ∈  𝑋 )  →  〈 𝐴 ,  𝐴 〉  ∈  𝑉 )  | 
						
						
							| 8 | 
							
								
							 | 
							elimasng | 
							⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  ( 𝑉  “  { 𝐴 } )  ↔  〈 𝐴 ,  𝐴 〉  ∈  𝑉 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							anidms | 
							⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  ( 𝑉  “  { 𝐴 } )  ↔  〈 𝐴 ,  𝐴 〉  ∈  𝑉 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							biimpar | 
							⊢ ( ( 𝐴  ∈  𝑋  ∧  〈 𝐴 ,  𝐴 〉  ∈  𝑉 )  →  𝐴  ∈  ( 𝑉  “  { 𝐴 } ) )  | 
						
						
							| 11 | 
							
								1 7 10
							 | 
							syl2anc | 
							⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝑉  ∈  𝑈  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  ( 𝑉  “  { 𝐴 } ) )  |