Step |
Hyp |
Ref |
Expression |
1 |
|
ustexsym |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) |
2 |
1
|
ad4ant13 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) |
3 |
|
simprl |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ◡ 𝑤 = 𝑤 ) |
4 |
|
coss1 |
⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑤 ) ) |
5 |
|
coss2 |
⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑣 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
6 |
4 5
|
sstrd |
⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
7 |
6
|
ad2antll |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
8 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) |
9 |
7 8
|
sstrd |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) |
10 |
3 9
|
jca |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
11 |
10
|
ex |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) → ( ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) → ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) |
12 |
11
|
reximdva |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ( ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) |
13 |
2 12
|
mpd |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
14 |
|
ustexhalf |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) |
15 |
13 14
|
r19.29a |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |