Metamath Proof Explorer


Theorem ustex2sym

Description: In an uniform structure, for any entourage V , there exists a symmetrical entourage smaller than half V . (Contributed by Thierry Arnoux, 16-Jan-2018)

Ref Expression
Assertion ustex2sym ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ∃ 𝑤𝑈 ( 𝑤 = 𝑤 ∧ ( 𝑤𝑤 ) ⊆ 𝑉 ) )

Proof

Step Hyp Ref Expression
1 ustexsym ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣𝑈 ) → ∃ 𝑤𝑈 ( 𝑤 = 𝑤𝑤𝑣 ) )
2 1 ad4ant13 ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑣𝑈 ) ∧ ( 𝑣𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤𝑈 ( 𝑤 = 𝑤𝑤𝑣 ) )
3 simprl ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑣𝑈 ) ∧ ( 𝑣𝑣 ) ⊆ 𝑉 ) ∧ 𝑤𝑈 ) ∧ ( 𝑤 = 𝑤𝑤𝑣 ) ) → 𝑤 = 𝑤 )
4 coss1 ( 𝑤𝑣 → ( 𝑤𝑤 ) ⊆ ( 𝑣𝑤 ) )
5 coss2 ( 𝑤𝑣 → ( 𝑣𝑤 ) ⊆ ( 𝑣𝑣 ) )
6 4 5 sstrd ( 𝑤𝑣 → ( 𝑤𝑤 ) ⊆ ( 𝑣𝑣 ) )
7 6 ad2antll ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑣𝑈 ) ∧ ( 𝑣𝑣 ) ⊆ 𝑉 ) ∧ 𝑤𝑈 ) ∧ ( 𝑤 = 𝑤𝑤𝑣 ) ) → ( 𝑤𝑤 ) ⊆ ( 𝑣𝑣 ) )
8 simpllr ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑣𝑈 ) ∧ ( 𝑣𝑣 ) ⊆ 𝑉 ) ∧ 𝑤𝑈 ) ∧ ( 𝑤 = 𝑤𝑤𝑣 ) ) → ( 𝑣𝑣 ) ⊆ 𝑉 )
9 7 8 sstrd ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑣𝑈 ) ∧ ( 𝑣𝑣 ) ⊆ 𝑉 ) ∧ 𝑤𝑈 ) ∧ ( 𝑤 = 𝑤𝑤𝑣 ) ) → ( 𝑤𝑤 ) ⊆ 𝑉 )
10 3 9 jca ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑣𝑈 ) ∧ ( 𝑣𝑣 ) ⊆ 𝑉 ) ∧ 𝑤𝑈 ) ∧ ( 𝑤 = 𝑤𝑤𝑣 ) ) → ( 𝑤 = 𝑤 ∧ ( 𝑤𝑤 ) ⊆ 𝑉 ) )
11 10 ex ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑣𝑈 ) ∧ ( 𝑣𝑣 ) ⊆ 𝑉 ) ∧ 𝑤𝑈 ) → ( ( 𝑤 = 𝑤𝑤𝑣 ) → ( 𝑤 = 𝑤 ∧ ( 𝑤𝑤 ) ⊆ 𝑉 ) ) )
12 11 reximdva ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑣𝑈 ) ∧ ( 𝑣𝑣 ) ⊆ 𝑉 ) → ( ∃ 𝑤𝑈 ( 𝑤 = 𝑤𝑤𝑣 ) → ∃ 𝑤𝑈 ( 𝑤 = 𝑤 ∧ ( 𝑤𝑤 ) ⊆ 𝑉 ) ) )
13 2 12 mpd ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑣𝑈 ) ∧ ( 𝑣𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤𝑈 ( 𝑤 = 𝑤 ∧ ( 𝑤𝑤 ) ⊆ 𝑉 ) )
14 ustexhalf ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ∃ 𝑣𝑈 ( 𝑣𝑣 ) ⊆ 𝑉 )
15 13 14 r19.29a ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ∃ 𝑤𝑈 ( 𝑤 = 𝑤 ∧ ( 𝑤𝑤 ) ⊆ 𝑉 ) )