Step |
Hyp |
Ref |
Expression |
1 |
|
ustex2sym |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) |
2 |
1
|
ad4ant13 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) |
3 |
|
simprl |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ◡ 𝑤 = 𝑤 ) |
4 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
5 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → 𝑤 ∈ 𝑈 ) |
6 |
|
ustssco |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ) |
8 |
|
simprr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) |
9 |
|
coss2 |
⊢ ( ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 → ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ ( 𝑤 ∘ 𝑣 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ ( 𝑤 ∘ 𝑣 ) ) |
11 |
|
sstr |
⊢ ( ( 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → 𝑤 ⊆ 𝑣 ) |
12 |
|
coss1 |
⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∘ 𝑣 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → ( 𝑤 ∘ 𝑣 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
14 |
10 13
|
sstrd |
⊢ ( ( 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
15 |
7 8 14
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
16 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) |
17 |
15 16
|
sstrd |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) |
18 |
3 17
|
jca |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) |
19 |
18
|
ex |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) → ( ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) ) |
20 |
19
|
reximdva |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ( ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) ) |
21 |
2 20
|
mpd |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) |
22 |
|
ustexhalf |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) |
23 |
21 22
|
r19.29a |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) |