Metamath Proof Explorer


Theorem ustexsym

Description: In an uniform structure, for any entourage V , there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018)

Ref Expression
Assertion ustexsym ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ∃ 𝑤𝑈 ( 𝑤 = 𝑤𝑤𝑉 ) )

Proof

Step Hyp Ref Expression
1 simplll ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑥𝑈 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) )
2 ustinvel ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥𝑈 ) → 𝑥𝑈 )
3 2 ad4ant13 ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑥𝑈 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) → 𝑥𝑈 )
4 simplr ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑥𝑈 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) → 𝑥𝑈 )
5 ustincl ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥𝑈𝑥𝑈 ) → ( 𝑥𝑥 ) ∈ 𝑈 )
6 1 3 4 5 syl3anc ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑥𝑈 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) → ( 𝑥𝑥 ) ∈ 𝑈 )
7 ustrel ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥𝑈 ) → Rel 𝑥 )
8 dfrel2 ( Rel 𝑥 𝑥 = 𝑥 )
9 7 8 sylib ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥𝑈 ) → 𝑥 = 𝑥 )
10 9 ineq1d ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥𝑈 ) → ( 𝑥 𝑥 ) = ( 𝑥 𝑥 ) )
11 cnvin ( 𝑥𝑥 ) = ( 𝑥 𝑥 )
12 incom ( 𝑥𝑥 ) = ( 𝑥 𝑥 )
13 10 11 12 3eqtr4g ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥𝑈 ) → ( 𝑥𝑥 ) = ( 𝑥𝑥 ) )
14 13 ad4ant13 ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑥𝑈 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) → ( 𝑥𝑥 ) = ( 𝑥𝑥 ) )
15 inss2 ( 𝑥𝑥 ) ⊆ 𝑥
16 ustssco ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥𝑈 ) → 𝑥 ⊆ ( 𝑥𝑥 ) )
17 16 ad4ant13 ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑥𝑈 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) → 𝑥 ⊆ ( 𝑥𝑥 ) )
18 simpr ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑥𝑈 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) → ( 𝑥𝑥 ) ⊆ 𝑉 )
19 17 18 sstrd ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑥𝑈 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) → 𝑥𝑉 )
20 15 19 sstrid ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑥𝑈 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) → ( 𝑥𝑥 ) ⊆ 𝑉 )
21 cnveq ( 𝑤 = ( 𝑥𝑥 ) → 𝑤 = ( 𝑥𝑥 ) )
22 id ( 𝑤 = ( 𝑥𝑥 ) → 𝑤 = ( 𝑥𝑥 ) )
23 21 22 eqeq12d ( 𝑤 = ( 𝑥𝑥 ) → ( 𝑤 = 𝑤 ( 𝑥𝑥 ) = ( 𝑥𝑥 ) ) )
24 sseq1 ( 𝑤 = ( 𝑥𝑥 ) → ( 𝑤𝑉 ↔ ( 𝑥𝑥 ) ⊆ 𝑉 ) )
25 23 24 anbi12d ( 𝑤 = ( 𝑥𝑥 ) → ( ( 𝑤 = 𝑤𝑤𝑉 ) ↔ ( ( 𝑥𝑥 ) = ( 𝑥𝑥 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) ) )
26 25 rspcev ( ( ( 𝑥𝑥 ) ∈ 𝑈 ∧ ( ( 𝑥𝑥 ) = ( 𝑥𝑥 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) ) → ∃ 𝑤𝑈 ( 𝑤 = 𝑤𝑤𝑉 ) )
27 6 14 20 26 syl12anc ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) ∧ 𝑥𝑈 ) ∧ ( 𝑥𝑥 ) ⊆ 𝑉 ) → ∃ 𝑤𝑈 ( 𝑤 = 𝑤𝑤𝑉 ) )
28 ustexhalf ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ∃ 𝑥𝑈 ( 𝑥𝑥 ) ⊆ 𝑉 )
29 27 28 r19.29a ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ∃ 𝑤𝑈 ( 𝑤 = 𝑤𝑤𝑉 ) )