Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 5-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | ustimasn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑉 “ { 𝑃 } ) ⊆ 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn | ⊢ ( 𝑉 “ { 𝑃 } ) ⊆ ran 𝑉 | |
2 | ustssxp | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) | |
3 | 2 | 3adant3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) |
4 | rnss | ⊢ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → ran 𝑉 ⊆ ran ( 𝑋 × 𝑋 ) ) | |
5 | rnxpid | ⊢ ran ( 𝑋 × 𝑋 ) = 𝑋 | |
6 | 4 5 | sseqtrdi | ⊢ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → ran 𝑉 ⊆ 𝑋 ) |
7 | 3 6 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → ran 𝑉 ⊆ 𝑋 ) |
8 | 1 7 | sstrid | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑉 “ { 𝑃 } ) ⊆ 𝑋 ) |