Metamath Proof Explorer


Theorem ustimasn

Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Assertion ustimasn ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑃𝑋 ) → ( 𝑉 “ { 𝑃 } ) ⊆ 𝑋 )

Proof

Step Hyp Ref Expression
1 imassrn ( 𝑉 “ { 𝑃 } ) ⊆ ran 𝑉
2 ustssxp ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) )
3 2 3adant3 ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑃𝑋 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) )
4 rnss ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → ran 𝑉 ⊆ ran ( 𝑋 × 𝑋 ) )
5 rnxpid ran ( 𝑋 × 𝑋 ) = 𝑋
6 4 5 sseqtrdi ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → ran 𝑉𝑋 )
7 3 6 syl ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑃𝑋 ) → ran 𝑉𝑋 )
8 1 7 sstrid ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑃𝑋 ) → ( 𝑉 “ { 𝑃 } ) ⊆ 𝑋 )