Metamath Proof Explorer


Theorem ustref

Description: Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion ustref ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝐴𝑋 ) → 𝐴 𝑉 𝐴 )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 resieq ( ( 𝐴𝑋𝐴𝑋 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴𝐴 = 𝐴 ) )
3 1 2 mpbiri ( ( 𝐴𝑋𝐴𝑋 ) → 𝐴 ( I ↾ 𝑋 ) 𝐴 )
4 3 anidms ( 𝐴𝑋𝐴 ( I ↾ 𝑋 ) 𝐴 )
5 4 3ad2ant3 ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝐴𝑋 ) → 𝐴 ( I ↾ 𝑋 ) 𝐴 )
6 ustdiag ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑉 )
7 6 ssbrd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴𝐴 𝑉 𝐴 ) )
8 7 3adant3 ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝐴𝑋 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴𝐴 𝑉 𝐴 ) )
9 5 8 mpd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝐴𝑋 ) → 𝐴 𝑉 𝐴 )