Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ 𝐴 = 𝐴 |
2 |
|
resieq |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴 ↔ 𝐴 = 𝐴 ) ) |
3 |
1 2
|
mpbiri |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ( I ↾ 𝑋 ) 𝐴 ) |
4 |
3
|
anidms |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ( I ↾ 𝑋 ) 𝐴 ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ( I ↾ 𝑋 ) 𝐴 ) |
6 |
|
ustdiag |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑉 ) |
7 |
6
|
ssbrd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴 → 𝐴 𝑉 𝐴 ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴 → 𝐴 𝑉 𝐴 ) ) |
9 |
5 8
|
mpd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 𝑉 𝐴 ) |