Metamath Proof Explorer
Description: The elements of uniform structures, called entourages, are relations.
(Contributed by Thierry Arnoux, 15-Nov-2017)
|
|
Ref |
Expression |
|
Assertion |
ustrel |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → Rel 𝑉 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ustssxp |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) |
2 |
|
xpss |
⊢ ( 𝑋 × 𝑋 ) ⊆ ( V × V ) |
3 |
1 2
|
sstrdi |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( V × V ) ) |
4 |
|
df-rel |
⊢ ( Rel 𝑉 ↔ 𝑉 ⊆ ( V × V ) ) |
5 |
3 4
|
sylibr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → Rel 𝑉 ) |