Metamath Proof Explorer


Theorem ustrel

Description: The elements of uniform structures, called entourages, are relations. (Contributed by Thierry Arnoux, 15-Nov-2017)

Ref Expression
Assertion ustrel ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → Rel 𝑉 )

Proof

Step Hyp Ref Expression
1 ustssxp ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) )
2 xpss ( 𝑋 × 𝑋 ) ⊆ ( V × V )
3 1 2 sstrdi ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → 𝑉 ⊆ ( V × V ) )
4 df-rel ( Rel 𝑉𝑉 ⊆ ( V × V ) )
5 3 4 sylibr ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → Rel 𝑉 )