Metamath Proof Explorer


Theorem ustssco

Description: In an uniform structure, any entourage V is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018)

Ref Expression
Assertion ustssco ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → 𝑉 ⊆ ( 𝑉𝑉 ) )

Proof

Step Hyp Ref Expression
1 ssun1 𝑉 ⊆ ( 𝑉 ∪ ( 𝑉𝑉 ) )
2 coires1 ( 𝑉 ∘ ( I ↾ 𝑋 ) ) = ( 𝑉𝑋 )
3 ustrel ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → Rel 𝑉 )
4 ustssxp ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) )
5 dmss ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → dom 𝑉 ⊆ dom ( 𝑋 × 𝑋 ) )
6 4 5 syl ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → dom 𝑉 ⊆ dom ( 𝑋 × 𝑋 ) )
7 dmxpid dom ( 𝑋 × 𝑋 ) = 𝑋
8 6 7 sseqtrdi ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → dom 𝑉𝑋 )
9 relssres ( ( Rel 𝑉 ∧ dom 𝑉𝑋 ) → ( 𝑉𝑋 ) = 𝑉 )
10 3 8 9 syl2anc ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ( 𝑉𝑋 ) = 𝑉 )
11 2 10 syl5eq ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ( 𝑉 ∘ ( I ↾ 𝑋 ) ) = 𝑉 )
12 11 uneq1d ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ( ( 𝑉 ∘ ( I ↾ 𝑋 ) ) ∪ ( 𝑉𝑉 ) ) = ( 𝑉 ∪ ( 𝑉𝑉 ) ) )
13 1 12 sseqtrrid ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → 𝑉 ⊆ ( ( 𝑉 ∘ ( I ↾ 𝑋 ) ) ∪ ( 𝑉𝑉 ) ) )
14 coundi ( 𝑉 ∘ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) ) = ( ( 𝑉 ∘ ( I ↾ 𝑋 ) ) ∪ ( 𝑉𝑉 ) )
15 13 14 sseqtrrdi ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → 𝑉 ⊆ ( 𝑉 ∘ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) ) )
16 ustdiag ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑉 )
17 ssequn1 ( ( I ↾ 𝑋 ) ⊆ 𝑉 ↔ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) = 𝑉 )
18 16 17 sylib ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ( ( I ↾ 𝑋 ) ∪ 𝑉 ) = 𝑉 )
19 18 coeq2d ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → ( 𝑉 ∘ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) ) = ( 𝑉𝑉 ) )
20 15 19 sseqtrd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈 ) → 𝑉 ⊆ ( 𝑉𝑉 ) )