Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
2 |
1
|
elfvexd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑋 ∈ V ) |
3 |
|
isust |
⊢ ( 𝑋 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) |
5 |
1 4
|
mpbid |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) |
6 |
5
|
simp3d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) |
7 |
|
simp1 |
⊢ ( ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) |
8 |
7
|
ralimi |
⊢ ( ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) |
9 |
6 8
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) |
10 |
|
simp2 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑉 ∈ 𝑈 ) |
11 |
2 2
|
xpexd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑋 × 𝑋 ) ∈ V ) |
12 |
|
simp3 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) |
13 |
11 12
|
sselpwd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑊 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) |
14 |
|
sseq1 |
⊢ ( 𝑣 = 𝑉 → ( 𝑣 ⊆ 𝑤 ↔ 𝑉 ⊆ 𝑤 ) ) |
15 |
14
|
imbi1d |
⊢ ( 𝑣 = 𝑉 → ( ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ↔ ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) ) |
16 |
|
sseq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑉 ⊆ 𝑤 ↔ 𝑉 ⊆ 𝑊 ) ) |
17 |
|
eleq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ∈ 𝑈 ↔ 𝑊 ∈ 𝑈 ) ) |
18 |
16 17
|
imbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ↔ ( 𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈 ) ) ) |
19 |
15 18
|
rspc2v |
⊢ ( ( 𝑉 ∈ 𝑈 ∧ 𝑊 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) → ( ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) → ( 𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈 ) ) ) |
20 |
10 13 19
|
syl2anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) → ( 𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈 ) ) ) |
21 |
9 20
|
mpd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈 ) ) |