Step |
Hyp |
Ref |
Expression |
1 |
|
ustund.1 |
⊢ ( 𝜑 → ( 𝐴 × 𝐴 ) ⊆ 𝑉 ) |
2 |
|
ustund.2 |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ⊆ 𝑉 ) |
3 |
|
ustund.3 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) |
4 |
|
xpco |
⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ → ( ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ∘ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ∘ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ) |
6 |
|
xpundi |
⊢ ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) = ( ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) ∪ ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) ) |
7 |
|
xpindir |
⊢ ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) = ( ( 𝐴 × 𝐴 ) ∩ ( 𝐵 × 𝐴 ) ) |
8 |
|
inss1 |
⊢ ( ( 𝐴 × 𝐴 ) ∩ ( 𝐵 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |
9 |
8 1
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐴 × 𝐴 ) ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝑉 ) |
10 |
7 9
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) ⊆ 𝑉 ) |
11 |
|
xpindir |
⊢ ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) = ( ( 𝐴 × 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) |
12 |
|
inss2 |
⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ ( 𝐵 × 𝐵 ) |
13 |
12 2
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐴 × 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ 𝑉 ) |
14 |
11 13
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) ⊆ 𝑉 ) |
15 |
10 14
|
unssd |
⊢ ( 𝜑 → ( ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) ∪ ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) ) ⊆ 𝑉 ) |
16 |
6 15
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑉 ) |
17 |
|
xpundir |
⊢ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) ) |
18 |
|
xpindi |
⊢ ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐴 × 𝐴 ) ∩ ( 𝐴 × 𝐵 ) ) |
19 |
|
inss1 |
⊢ ( ( 𝐴 × 𝐴 ) ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐴 ) |
20 |
19 1
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐴 × 𝐴 ) ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑉 ) |
21 |
18 20
|
eqsstrid |
⊢ ( 𝜑 → ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝑉 ) |
22 |
|
xpindi |
⊢ ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐵 × 𝐴 ) ∩ ( 𝐵 × 𝐵 ) ) |
23 |
|
inss2 |
⊢ ( ( 𝐵 × 𝐴 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ ( 𝐵 × 𝐵 ) |
24 |
23 2
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ 𝑉 ) |
25 |
22 24
|
eqsstrid |
⊢ ( 𝜑 → ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝑉 ) |
26 |
21 25
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) ) ⊆ 𝑉 ) |
27 |
17 26
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝑉 ) |
28 |
16 27
|
coss12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ∘ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ) ⊆ ( 𝑉 ∘ 𝑉 ) ) |
29 |
5 28
|
eqsstrrd |
⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ⊆ ( 𝑉 ∘ 𝑉 ) ) |