Step |
Hyp |
Ref |
Expression |
1 |
|
ustbasel |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ 𝑈 ) |
2 |
|
ustssxp |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ⊆ ( 𝑋 × 𝑋 ) ) |
3 |
2
|
ralrimiva |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑢 ∈ 𝑈 𝑢 ⊆ ( 𝑋 × 𝑋 ) ) |
4 |
|
pwssb |
⊢ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ↔ ∀ 𝑢 ∈ 𝑈 𝑢 ⊆ ( 𝑋 × 𝑋 ) ) |
5 |
3 4
|
sylibr |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
6 |
|
elpwuni |
⊢ ( ( 𝑋 × 𝑋 ) ∈ 𝑈 → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ↔ ∪ 𝑈 = ( 𝑋 × 𝑋 ) ) ) |
7 |
6
|
biimpa |
⊢ ( ( ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) → ∪ 𝑈 = ( 𝑋 × 𝑋 ) ) |
8 |
1 5 7
|
syl2anc |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 = ( 𝑋 × 𝑋 ) ) |