Step |
Hyp |
Ref |
Expression |
1 |
|
utopustuq.1 |
⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
2 |
|
simpl1l |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
3 |
2
|
3anassrs |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
4 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑤 ∈ 𝑈 ) |
5 |
|
ustssxp |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → 𝑤 ⊆ ( 𝑋 × 𝑋 ) ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑤 ⊆ ( 𝑋 × 𝑋 ) ) |
7 |
|
simpl1r |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) → 𝑝 ∈ 𝑋 ) |
8 |
7
|
3anassrs |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑝 ∈ 𝑋 ) |
9 |
8
|
snssd |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → { 𝑝 } ⊆ 𝑋 ) |
10 |
|
simpl3 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) → 𝑏 ⊆ 𝑋 ) |
11 |
10
|
3anassrs |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑏 ⊆ 𝑋 ) |
12 |
|
xpss12 |
⊢ ( ( { 𝑝 } ⊆ 𝑋 ∧ 𝑏 ⊆ 𝑋 ) → ( { 𝑝 } × 𝑏 ) ⊆ ( 𝑋 × 𝑋 ) ) |
13 |
9 11 12
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( { 𝑝 } × 𝑏 ) ⊆ ( 𝑋 × 𝑋 ) ) |
14 |
6 13
|
unssd |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
15 |
|
ssun1 |
⊢ 𝑤 ⊆ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) |
16 |
15
|
a1i |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑤 ⊆ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ) |
17 |
|
ustssel |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ∧ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑤 ⊆ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) → ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ∈ 𝑈 ) ) |
18 |
17
|
imp |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ∧ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑤 ⊆ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ) → ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ∈ 𝑈 ) |
19 |
3 4 14 16 18
|
syl31anc |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ∈ 𝑈 ) |
20 |
|
simpl2 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) → 𝑎 ⊆ 𝑏 ) |
21 |
20
|
3anassrs |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑎 ⊆ 𝑏 ) |
22 |
|
ssequn1 |
⊢ ( 𝑎 ⊆ 𝑏 ↔ ( 𝑎 ∪ 𝑏 ) = 𝑏 ) |
23 |
22
|
biimpi |
⊢ ( 𝑎 ⊆ 𝑏 → ( 𝑎 ∪ 𝑏 ) = 𝑏 ) |
24 |
|
id |
⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
25 |
|
inidm |
⊢ ( { 𝑝 } ∩ { 𝑝 } ) = { 𝑝 } |
26 |
|
vex |
⊢ 𝑝 ∈ V |
27 |
26
|
snnz |
⊢ { 𝑝 } ≠ ∅ |
28 |
25 27
|
eqnetri |
⊢ ( { 𝑝 } ∩ { 𝑝 } ) ≠ ∅ |
29 |
|
xpima2 |
⊢ ( ( { 𝑝 } ∩ { 𝑝 } ) ≠ ∅ → ( ( { 𝑝 } × 𝑏 ) “ { 𝑝 } ) = 𝑏 ) |
30 |
28 29
|
mp1i |
⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → ( ( { 𝑝 } × 𝑏 ) “ { 𝑝 } ) = 𝑏 ) |
31 |
30
|
eqcomd |
⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → 𝑏 = ( ( { 𝑝 } × 𝑏 ) “ { 𝑝 } ) ) |
32 |
24 31
|
uneq12d |
⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → ( 𝑎 ∪ 𝑏 ) = ( ( 𝑤 “ { 𝑝 } ) ∪ ( ( { 𝑝 } × 𝑏 ) “ { 𝑝 } ) ) ) |
33 |
|
imaundir |
⊢ ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) = ( ( 𝑤 “ { 𝑝 } ) ∪ ( ( { 𝑝 } × 𝑏 ) “ { 𝑝 } ) ) |
34 |
32 33
|
eqtr4di |
⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → ( 𝑎 ∪ 𝑏 ) = ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) ) |
35 |
23 34
|
sylan9req |
⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑏 = ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) ) |
36 |
21 35
|
sylancom |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑏 = ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) ) |
37 |
|
imaeq1 |
⊢ ( 𝑢 = ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) → ( 𝑢 “ { 𝑝 } ) = ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) ) |
38 |
37
|
rspceeqv |
⊢ ( ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ∈ 𝑈 ∧ 𝑏 = ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) ) → ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) |
39 |
19 36 38
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) |
40 |
1
|
ustuqtoplem |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ V ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
41 |
40
|
elvd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
42 |
41
|
biimpa |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
43 |
42
|
3ad2antl1 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
44 |
39 43
|
r19.29a |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) |
45 |
1
|
ustuqtoplem |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ∈ V ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) ) |
46 |
45
|
elvd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) ) |
48 |
47
|
adantr |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) ) |
49 |
44 48
|
mpbird |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) |