Step |
Hyp |
Ref |
Expression |
1 |
|
utopustuq.1 |
⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
2 |
|
fnresi |
⊢ ( I ↾ 𝑋 ) Fn 𝑋 |
3 |
|
fnsnfv |
⊢ ( ( ( I ↾ 𝑋 ) Fn 𝑋 ∧ 𝑝 ∈ 𝑋 ) → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } = ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ) |
4 |
2 3
|
mpan |
⊢ ( 𝑝 ∈ 𝑋 → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } = ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ) |
5 |
4
|
ad4antlr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } = ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ) |
6 |
|
ustdiag |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑤 ) |
7 |
6
|
ad5ant14 |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( I ↾ 𝑋 ) ⊆ 𝑤 ) |
8 |
|
imass1 |
⊢ ( ( I ↾ 𝑋 ) ⊆ 𝑤 → ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ) |
9 |
7 8
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ) |
10 |
5 9
|
eqsstrd |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } ⊆ ( 𝑤 “ { 𝑝 } ) ) |
11 |
|
fvex |
⊢ ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ∈ V |
12 |
11
|
snss |
⊢ ( ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ∈ ( 𝑤 “ { 𝑝 } ) ↔ { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } ⊆ ( 𝑤 “ { 𝑝 } ) ) |
13 |
10 12
|
sylibr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ∈ ( 𝑤 “ { 𝑝 } ) ) |
14 |
|
fvresi |
⊢ ( 𝑝 ∈ 𝑋 → ( ( I ↾ 𝑋 ) ‘ 𝑝 ) = 𝑝 ) |
15 |
14
|
eqcomd |
⊢ ( 𝑝 ∈ 𝑋 → 𝑝 = ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ) |
16 |
15
|
ad4antlr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑝 = ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ) |
17 |
|
simpr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
18 |
13 16 17
|
3eltr4d |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑝 ∈ 𝑎 ) |
19 |
1
|
ustuqtoplem |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ V ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
20 |
19
|
elvd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
21 |
20
|
biimpa |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
22 |
18 21
|
r19.29a |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) |