Step |
Hyp |
Ref |
Expression |
1 |
|
utoptop.1 |
⊢ 𝐽 = ( unifTop ‘ 𝑈 ) |
2 |
|
utoptop |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ Top ) |
3 |
1 2
|
eqeltrid |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
4 |
|
txtop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
5 |
3 3 4
|
syl2anc |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
8 |
|
0nei |
⊢ ( ( 𝐽 ×t 𝐽 ) ∈ Top → ∅ ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ∅ ) ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → ∅ ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ∅ ) ) |
10 |
|
coeq1 |
⊢ ( 𝑀 = ∅ → ( 𝑀 ∘ 𝑉 ) = ( ∅ ∘ 𝑉 ) ) |
11 |
|
co01 |
⊢ ( ∅ ∘ 𝑉 ) = ∅ |
12 |
10 11
|
eqtrdi |
⊢ ( 𝑀 = ∅ → ( 𝑀 ∘ 𝑉 ) = ∅ ) |
13 |
12
|
coeq2d |
⊢ ( 𝑀 = ∅ → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) = ( 𝑉 ∘ ∅ ) ) |
14 |
|
co02 |
⊢ ( 𝑉 ∘ ∅ ) = ∅ |
15 |
13 14
|
eqtrdi |
⊢ ( 𝑀 = ∅ → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) = ∅ ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) = ∅ ) |
17 |
|
simpr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → 𝑀 = ∅ ) |
18 |
17
|
fveq2d |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) = ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ∅ ) ) |
19 |
9 16 18
|
3eltr4d |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ) |
20 |
6
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
21 |
|
simpl1 |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
22 |
21 3
|
syl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝐽 ∈ Top ) |
23 |
|
simpl2l |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝑉 ∈ 𝑈 ) |
24 |
|
simp3 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) |
25 |
24
|
sselda |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝑟 ∈ ( 𝑋 × 𝑋 ) ) |
26 |
|
xp1st |
⊢ ( 𝑟 ∈ ( 𝑋 × 𝑋 ) → ( 1st ‘ 𝑟 ) ∈ 𝑋 ) |
27 |
25 26
|
syl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 1st ‘ 𝑟 ) ∈ 𝑋 ) |
28 |
1
|
utopsnnei |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ ( 1st ‘ 𝑟 ) ∈ 𝑋 ) → ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 1st ‘ 𝑟 ) } ) ) |
29 |
21 23 27 28
|
syl3anc |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 1st ‘ 𝑟 ) } ) ) |
30 |
|
xp2nd |
⊢ ( 𝑟 ∈ ( 𝑋 × 𝑋 ) → ( 2nd ‘ 𝑟 ) ∈ 𝑋 ) |
31 |
25 30
|
syl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 2nd ‘ 𝑟 ) ∈ 𝑋 ) |
32 |
1
|
utopsnnei |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ ( 2nd ‘ 𝑟 ) ∈ 𝑋 ) → ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 2nd ‘ 𝑟 ) } ) ) |
33 |
21 23 31 32
|
syl3anc |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 2nd ‘ 𝑟 ) } ) ) |
34 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
35 |
34 34
|
neitx |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐽 ∈ Top ) ∧ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 1st ‘ 𝑟 ) } ) ∧ ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( { ( 1st ‘ 𝑟 ) } × { ( 2nd ‘ 𝑟 ) } ) ) ) |
36 |
22 22 29 33 35
|
syl22anc |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( { ( 1st ‘ 𝑟 ) } × { ( 2nd ‘ 𝑟 ) } ) ) ) |
37 |
|
fvex |
⊢ ( 1st ‘ 𝑟 ) ∈ V |
38 |
|
fvex |
⊢ ( 2nd ‘ 𝑟 ) ∈ V |
39 |
37 38
|
xpsn |
⊢ ( { ( 1st ‘ 𝑟 ) } × { ( 2nd ‘ 𝑟 ) } ) = { 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 } |
40 |
39
|
fveq2i |
⊢ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( { ( 1st ‘ 𝑟 ) } × { ( 2nd ‘ 𝑟 ) } ) ) = ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 } ) |
41 |
36 40
|
eleqtrdi |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 } ) ) |
42 |
24
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) |
43 |
|
xpss |
⊢ ( 𝑋 × 𝑋 ) ⊆ ( V × V ) |
44 |
|
sstr |
⊢ ( ( 𝑀 ⊆ ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ⊆ ( V × V ) ) → 𝑀 ⊆ ( V × V ) ) |
45 |
43 44
|
mpan2 |
⊢ ( 𝑀 ⊆ ( 𝑋 × 𝑋 ) → 𝑀 ⊆ ( V × V ) ) |
46 |
|
df-rel |
⊢ ( Rel 𝑀 ↔ 𝑀 ⊆ ( V × V ) ) |
47 |
45 46
|
sylibr |
⊢ ( 𝑀 ⊆ ( 𝑋 × 𝑋 ) → Rel 𝑀 ) |
48 |
42 47
|
syl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → Rel 𝑀 ) |
49 |
|
1st2nd |
⊢ ( ( Rel 𝑀 ∧ 𝑟 ∈ 𝑀 ) → 𝑟 = 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 ) |
50 |
48 49
|
sylancom |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝑟 = 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 ) |
51 |
50
|
sneqd |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → { 𝑟 } = { 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 } ) |
52 |
51
|
fveq2d |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) = ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 } ) ) |
53 |
41 52
|
eleqtrrd |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) |
54 |
|
relxp |
⊢ Rel ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) |
55 |
54
|
a1i |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → Rel ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) |
56 |
|
1st2nd |
⊢ ( ( Rel ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
57 |
55 56
|
sylancom |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
58 |
|
simpll2 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ) |
59 |
58
|
simprd |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ◡ 𝑉 = 𝑉 ) |
60 |
|
simpll1 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
61 |
58
|
simpld |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑉 ∈ 𝑈 ) |
62 |
|
ustrel |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → Rel 𝑉 ) |
63 |
60 61 62
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → Rel 𝑉 ) |
64 |
|
xp1st |
⊢ ( 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) → ( 1st ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ) |
65 |
64
|
adantl |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 1st ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ) |
66 |
|
elrelimasn |
⊢ ( Rel 𝑉 → ( ( 1st ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ↔ ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) ) |
67 |
66
|
biimpa |
⊢ ( ( Rel 𝑉 ∧ ( 1st ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ) → ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) |
68 |
63 65 67
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) |
69 |
|
fvex |
⊢ ( 1st ‘ 𝑧 ) ∈ V |
70 |
37 69
|
brcnv |
⊢ ( ( 1st ‘ 𝑟 ) ◡ 𝑉 ( 1st ‘ 𝑧 ) ↔ ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ) |
71 |
|
breq |
⊢ ( ◡ 𝑉 = 𝑉 → ( ( 1st ‘ 𝑟 ) ◡ 𝑉 ( 1st ‘ 𝑧 ) ↔ ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) ) |
72 |
70 71
|
bitr3id |
⊢ ( ◡ 𝑉 = 𝑉 → ( ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ↔ ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) ) |
73 |
72
|
biimpar |
⊢ ( ( ◡ 𝑉 = 𝑉 ∧ ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) → ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ) |
74 |
59 68 73
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ) |
75 |
|
simpll3 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) |
76 |
|
simplr |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑟 ∈ 𝑀 ) |
77 |
|
1st2ndbr |
⊢ ( ( Rel 𝑀 ∧ 𝑟 ∈ 𝑀 ) → ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) |
78 |
47 77
|
sylan |
⊢ ( ( 𝑀 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑟 ∈ 𝑀 ) → ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) |
79 |
75 76 78
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) |
80 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) → ( 2nd ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) |
81 |
80
|
adantl |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) |
82 |
|
elrelimasn |
⊢ ( Rel 𝑉 → ( ( 2nd ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ↔ ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) ) |
83 |
82
|
biimpa |
⊢ ( ( Rel 𝑉 ∧ ( 2nd ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) → ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) |
84 |
63 81 83
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) |
85 |
69 38 37
|
3pm3.2i |
⊢ ( ( 1st ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑟 ) ∈ V ∧ ( 1st ‘ 𝑟 ) ∈ V ) |
86 |
|
brcogw |
⊢ ( ( ( ( 1st ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑟 ) ∈ V ∧ ( 1st ‘ 𝑟 ) ∈ V ) ∧ ( ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ∧ ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) ) → ( 1st ‘ 𝑧 ) ( 𝑀 ∘ 𝑉 ) ( 2nd ‘ 𝑟 ) ) |
87 |
85 86
|
mpan |
⊢ ( ( ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ∧ ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) → ( 1st ‘ 𝑧 ) ( 𝑀 ∘ 𝑉 ) ( 2nd ‘ 𝑟 ) ) |
88 |
|
fvex |
⊢ ( 2nd ‘ 𝑧 ) ∈ V |
89 |
69 88 38
|
3pm3.2i |
⊢ ( ( 1st ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑟 ) ∈ V ) |
90 |
|
brcogw |
⊢ ( ( ( ( 1st ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑟 ) ∈ V ) ∧ ( ( 1st ‘ 𝑧 ) ( 𝑀 ∘ 𝑉 ) ( 2nd ‘ 𝑟 ) ∧ ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) ) → ( 1st ‘ 𝑧 ) ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ( 2nd ‘ 𝑧 ) ) |
91 |
89 90
|
mpan |
⊢ ( ( ( 1st ‘ 𝑧 ) ( 𝑀 ∘ 𝑉 ) ( 2nd ‘ 𝑟 ) ∧ ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) → ( 1st ‘ 𝑧 ) ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ( 2nd ‘ 𝑧 ) ) |
92 |
87 91
|
sylan |
⊢ ( ( ( ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ∧ ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) ∧ ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) → ( 1st ‘ 𝑧 ) ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ( 2nd ‘ 𝑧 ) ) |
93 |
74 79 84 92
|
syl21anc |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 1st ‘ 𝑧 ) ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ( 2nd ‘ 𝑧 ) ) |
94 |
|
df-br |
⊢ ( ( 1st ‘ 𝑧 ) ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ( 2nd ‘ 𝑧 ) ↔ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ) |
95 |
93 94
|
sylib |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ) |
96 |
57 95
|
eqeltrd |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑧 ∈ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ) |
97 |
96
|
ex |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) → 𝑧 ∈ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ) ) |
98 |
97
|
ssrdv |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ⊆ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ) |
99 |
|
simp1 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
100 |
|
simp2l |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑉 ∈ 𝑈 ) |
101 |
|
ustssxp |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) |
102 |
99 100 101
|
syl2anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) |
103 |
|
coss1 |
⊢ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ ( 𝑀 ∘ 𝑉 ) ) ) |
104 |
102 103
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ ( 𝑀 ∘ 𝑉 ) ) ) |
105 |
|
coss1 |
⊢ ( 𝑀 ⊆ ( 𝑋 × 𝑋 ) → ( 𝑀 ∘ 𝑉 ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ 𝑉 ) ) |
106 |
24 105
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑀 ∘ 𝑉 ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ 𝑉 ) ) |
107 |
|
coss2 |
⊢ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → ( ( 𝑋 × 𝑋 ) ∘ 𝑉 ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ ( 𝑋 × 𝑋 ) ) ) |
108 |
|
xpcoid |
⊢ ( ( 𝑋 × 𝑋 ) ∘ ( 𝑋 × 𝑋 ) ) = ( 𝑋 × 𝑋 ) |
109 |
107 108
|
sseqtrdi |
⊢ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → ( ( 𝑋 × 𝑋 ) ∘ 𝑉 ) ⊆ ( 𝑋 × 𝑋 ) ) |
110 |
102 109
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( ( 𝑋 × 𝑋 ) ∘ 𝑉 ) ⊆ ( 𝑋 × 𝑋 ) ) |
111 |
106 110
|
sstrd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑀 ∘ 𝑉 ) ⊆ ( 𝑋 × 𝑋 ) ) |
112 |
|
coss2 |
⊢ ( ( 𝑀 ∘ 𝑉 ) ⊆ ( 𝑋 × 𝑋 ) → ( ( 𝑋 × 𝑋 ) ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ ( 𝑋 × 𝑋 ) ) ) |
113 |
112 108
|
sseqtrdi |
⊢ ( ( 𝑀 ∘ 𝑉 ) ⊆ ( 𝑋 × 𝑋 ) → ( ( 𝑋 × 𝑋 ) ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
114 |
111 113
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( ( 𝑋 × 𝑋 ) ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
115 |
104 114
|
sstrd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
116 |
|
utopbas |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ∪ ( unifTop ‘ 𝑈 ) ) |
117 |
1
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( unifTop ‘ 𝑈 ) |
118 |
116 117
|
eqtr4di |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
119 |
118
|
sqxpeqd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) = ( ∪ 𝐽 × ∪ 𝐽 ) ) |
120 |
34 34
|
txuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐽 ∈ Top ) → ( ∪ 𝐽 × ∪ 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
121 |
3 3 120
|
syl2anc |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ∪ 𝐽 × ∪ 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
122 |
119 121
|
eqtrd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
123 |
122
|
3ad2ant1 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑋 × 𝑋 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
124 |
115 123
|
sseqtrd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
125 |
124
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
126 |
|
eqid |
⊢ ∪ ( 𝐽 ×t 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) |
127 |
126
|
ssnei2 |
⊢ ( ( ( ( 𝐽 ×t 𝐽 ) ∈ Top ∧ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) ∧ ( ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ⊆ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∧ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) |
128 |
20 53 98 125 127
|
syl22anc |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) |
129 |
128
|
ralrimiva |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ∀ 𝑟 ∈ 𝑀 ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) |
130 |
129
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → ∀ 𝑟 ∈ 𝑀 ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) |
131 |
6
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
132 |
24 123
|
sseqtrd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑀 ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
133 |
132
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → 𝑀 ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
134 |
|
simpr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → 𝑀 ≠ ∅ ) |
135 |
126
|
neips |
⊢ ( ( ( 𝐽 ×t 𝐽 ) ∈ Top ∧ 𝑀 ⊆ ∪ ( 𝐽 ×t 𝐽 ) ∧ 𝑀 ≠ ∅ ) → ( ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ↔ ∀ 𝑟 ∈ 𝑀 ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) ) |
136 |
131 133 134 135
|
syl3anc |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → ( ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ↔ ∀ 𝑟 ∈ 𝑀 ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) ) |
137 |
130 136
|
mpbird |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ) |
138 |
19 137
|
pm2.61dane |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ) |