Step |
Hyp |
Ref |
Expression |
1 |
|
utoptop.1 |
⊢ 𝐽 = ( unifTop ‘ 𝑈 ) |
2 |
|
fveq2 |
⊢ ( 𝑟 = 𝑝 → ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑟 ) = ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) |
3 |
2
|
eleq2d |
⊢ ( 𝑟 = 𝑝 → ( 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑟 ) ↔ 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) ) |
4 |
3
|
cbvralvw |
⊢ ( ∀ 𝑟 ∈ 𝑏 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑟 ) ↔ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) |
5 |
|
eleq1w |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ↔ 𝑎 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) ) |
6 |
5
|
raleqbi1dv |
⊢ ( 𝑏 = 𝑎 → ( ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ↔ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) ) |
7 |
4 6
|
syl5bb |
⊢ ( 𝑏 = 𝑎 → ( ∀ 𝑟 ∈ 𝑏 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑟 ) ↔ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) ) |
8 |
7
|
cbvrabv |
⊢ { 𝑏 ∈ 𝒫 𝑋 ∣ ∀ 𝑟 ∈ 𝑏 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑟 ) } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) } |
9 |
|
simpl |
⊢ ( ( 𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈 ) → 𝑞 = 𝑝 ) |
10 |
9
|
sneqd |
⊢ ( ( 𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈 ) → { 𝑞 } = { 𝑝 } ) |
11 |
10
|
imaeq2d |
⊢ ( ( 𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 “ { 𝑞 } ) = ( 𝑣 “ { 𝑝 } ) ) |
12 |
11
|
mpteq2dva |
⊢ ( 𝑞 = 𝑝 → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
13 |
12
|
rneqd |
⊢ ( 𝑞 = 𝑝 → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
14 |
13
|
cbvmptv |
⊢ ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
15 |
1 8 14
|
utopsnneiplem |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |