Description: Topology induced by a uniform structure U with its base set. (Contributed by Thierry Arnoux, 5-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | utoptopon | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ ( TopOn ‘ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utoptop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ Top ) | |
2 | utopbas | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ∪ ( unifTop ‘ 𝑈 ) ) | |
3 | istopon | ⊢ ( ( unifTop ‘ 𝑈 ) ∈ ( TopOn ‘ 𝑋 ) ↔ ( ( unifTop ‘ 𝑈 ) ∈ Top ∧ 𝑋 = ∪ ( unifTop ‘ 𝑈 ) ) ) | |
4 | 1 2 3 | sylanbrc | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ ( TopOn ‘ 𝑋 ) ) |