Metamath Proof Explorer


Theorem utoptopon

Description: Topology induced by a uniform structure U with its base set. (Contributed by Thierry Arnoux, 5-Jan-2018)

Ref Expression
Assertion utoptopon ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ ( TopOn ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 utoptop ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ Top )
2 utopbas ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( unifTop ‘ 𝑈 ) )
3 istopon ( ( unifTop ‘ 𝑈 ) ∈ ( TopOn ‘ 𝑋 ) ↔ ( ( unifTop ‘ 𝑈 ) ∈ Top ∧ 𝑋 = ( unifTop ‘ 𝑈 ) ) )
4 1 2 3 sylanbrc ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ ( TopOn ‘ 𝑋 ) )