Metamath Proof Explorer


Theorem utopval

Description: The topology induced by a uniform structure U . (Contributed by Thierry Arnoux, 30-Nov-2017)

Ref Expression
Assertion utopval ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥𝑎𝑣𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } )

Proof

Step Hyp Ref Expression
1 df-utop unifTop = ( 𝑢 ran UnifOn ↦ { 𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀ 𝑥𝑎𝑣𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } )
2 simpr ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝑢 = 𝑈 )
3 2 unieqd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝑢 = 𝑈 )
4 3 dmeqd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → dom 𝑢 = dom 𝑈 )
5 ustbas2 ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom 𝑈 )
6 5 adantr ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝑋 = dom 𝑈 )
7 4 6 eqtr4d ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → dom 𝑢 = 𝑋 )
8 7 pweqd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝒫 dom 𝑢 = 𝒫 𝑋 )
9 2 rexeqdv ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ( ∃ 𝑣𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∃ 𝑣𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) )
10 9 ralbidv ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ( ∀ 𝑥𝑎𝑣𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∀ 𝑥𝑎𝑣𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) )
11 8 10 rabeqbidv ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → { 𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀ 𝑥𝑎𝑣𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥𝑎𝑣𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } )
12 elrnust ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ran UnifOn )
13 elfvex ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V )
14 pwexg ( 𝑋 ∈ V → 𝒫 𝑋 ∈ V )
15 rabexg ( 𝒫 𝑋 ∈ V → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥𝑎𝑣𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ∈ V )
16 13 14 15 3syl ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥𝑎𝑣𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ∈ V )
17 1 11 12 16 fvmptd2 ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥𝑎𝑣𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } )