Step |
Hyp |
Ref |
Expression |
1 |
|
df-utop |
⊢ unifTop = ( 𝑢 ∈ ∪ ran UnifOn ↦ { 𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |
2 |
|
simpr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝑢 = 𝑈 ) |
3 |
2
|
unieqd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ∪ 𝑢 = ∪ 𝑈 ) |
4 |
3
|
dmeqd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → dom ∪ 𝑢 = dom ∪ 𝑈 ) |
5 |
|
ustbas2 |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom ∪ 𝑈 ) |
6 |
5
|
adantr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝑋 = dom ∪ 𝑈 ) |
7 |
4 6
|
eqtr4d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → dom ∪ 𝑢 = 𝑋 ) |
8 |
7
|
pweqd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝒫 dom ∪ 𝑢 = 𝒫 𝑋 ) |
9 |
2
|
rexeqdv |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ( ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) |
10 |
9
|
ralbidv |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ( ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) |
11 |
8 10
|
rabeqbidv |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → { 𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |
12 |
|
elrnust |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ ∪ ran UnifOn ) |
13 |
|
elfvex |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) |
14 |
|
pwexg |
⊢ ( 𝑋 ∈ V → 𝒫 𝑋 ∈ V ) |
15 |
|
rabexg |
⊢ ( 𝒫 𝑋 ∈ V → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ∈ V ) |
16 |
13 14 15
|
3syl |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ∈ V ) |
17 |
1 11 12 16
|
fvmptd2 |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |