Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
uun0.1
Metamath Proof Explorer
Description: Convention notation form of un0.1 . (Contributed by Alan Sare , 23-Apr-2015) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
uun0.1.1
⊢ ( ⊤ → 𝜑 )
uun0.1.2
⊢ ( 𝜓 → 𝜒 )
uun0.1.3
⊢ ( ( ⊤ ∧ 𝜓 ) → 𝜃 )
Assertion
uun0.1
⊢ ( 𝜓 → 𝜃 )
Proof
Step
Hyp
Ref
Expression
1
uun0.1.1
⊢ ( ⊤ → 𝜑 )
2
uun0.1.2
⊢ ( 𝜓 → 𝜒 )
3
uun0.1.3
⊢ ( ( ⊤ ∧ 𝜓 ) → 𝜃 )
4
tru
⊢ ⊤
5
1 2
pm3.2i
⊢ ( ( ⊤ → 𝜑 ) ∧ ( 𝜓 → 𝜒 ) )
6
5 3
pm3.2i
⊢ ( ( ( ⊤ → 𝜑 ) ∧ ( 𝜓 → 𝜒 ) ) ∧ ( ( ⊤ ∧ 𝜓 ) → 𝜃 ) )
7
6
simpri
⊢ ( ( ⊤ ∧ 𝜓 ) → 𝜃 )
8
7
ex
⊢ ( ⊤ → ( 𝜓 → 𝜃 ) )
9
4 8
ax-mp
⊢ ( 𝜓 → 𝜃 )