Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uun132p1.1 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜑 ) → 𝜃 ) | |
Assertion | uun132p1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uun132p1.1 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜑 ) → 𝜃 ) | |
2 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
3 | ancom | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜑 ) ) | |
4 | 2 3 | bitri | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜑 ) ) |
5 | 4 1 | sylbi | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |