Metamath Proof Explorer


Theorem uun132p1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun132p1.1 ( ( ( 𝜓𝜒 ) ∧ 𝜑 ) → 𝜃 )
Assertion uun132p1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 uun132p1.1 ( ( ( 𝜓𝜒 ) ∧ 𝜑 ) → 𝜃 )
2 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
3 ancom ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( ( 𝜓𝜒 ) ∧ 𝜑 ) )
4 2 3 bitri ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜓𝜒 ) ∧ 𝜑 ) )
5 4 1 sylbi ( ( 𝜑𝜓𝜒 ) → 𝜃 )