Metamath Proof Explorer


Theorem uun2221

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 30-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun2221.1 ( ( 𝜑𝜑 ∧ ( 𝜓𝜑 ) ) → 𝜒 )
Assertion uun2221 ( ( 𝜓𝜑 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 uun2221.1 ( ( 𝜑𝜑 ∧ ( 𝜓𝜑 ) ) → 𝜒 )
2 3anass ( ( 𝜑𝜑 ∧ ( 𝜓𝜑 ) ) ↔ ( 𝜑 ∧ ( 𝜑 ∧ ( 𝜓𝜑 ) ) ) )
3 anabs5 ( ( 𝜑 ∧ ( 𝜑 ∧ ( 𝜓𝜑 ) ) ) ↔ ( 𝜑 ∧ ( 𝜓𝜑 ) ) )
4 2 3 bitri ( ( 𝜑𝜑 ∧ ( 𝜓𝜑 ) ) ↔ ( 𝜑 ∧ ( 𝜓𝜑 ) ) )
5 ancom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
6 5 anbi2i ( ( 𝜑 ∧ ( 𝜑𝜓 ) ) ↔ ( 𝜑 ∧ ( 𝜓𝜑 ) ) )
7 4 6 bitr4i ( ( 𝜑𝜑 ∧ ( 𝜓𝜑 ) ) ↔ ( 𝜑 ∧ ( 𝜑𝜓 ) ) )
8 anabs5 ( ( 𝜑 ∧ ( 𝜑𝜓 ) ) ↔ ( 𝜑𝜓 ) )
9 8 5 bitri ( ( 𝜑 ∧ ( 𝜑𝜓 ) ) ↔ ( 𝜓𝜑 ) )
10 7 9 bitri ( ( 𝜑𝜑 ∧ ( 𝜓𝜑 ) ) ↔ ( 𝜓𝜑 ) )
11 10 imbi1i ( ( ( 𝜑𝜑 ∧ ( 𝜓𝜑 ) ) → 𝜒 ) ↔ ( ( 𝜓𝜑 ) → 𝜒 ) )
12 1 11 mpbi ( ( 𝜓𝜑 ) → 𝜒 )