| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uun2221p1.1 |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ∧ 𝜑 ) → 𝜒 ) |
| 2 |
|
3anrot |
⊢ ( ( 𝜑 ∧ 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ∧ 𝜑 ) ) |
| 3 |
2
|
imbi1i |
⊢ ( ( ( 𝜑 ∧ 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) → 𝜒 ) ↔ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ∧ 𝜑 ) → 𝜒 ) ) |
| 4 |
1 3
|
mpbir |
⊢ ( ( 𝜑 ∧ 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) → 𝜒 ) |
| 5 |
|
3anass |
⊢ ( ( 𝜑 ∧ 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) ↔ ( 𝜑 ∧ ( 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) ) ) |
| 6 |
|
anabs5 |
⊢ ( ( 𝜑 ∧ ( 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) ) |
| 7 |
5 6
|
bitri |
⊢ ( ( 𝜑 ∧ 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) ) |
| 8 |
|
ancom |
⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜓 ∧ 𝜑 ) ) |
| 9 |
8
|
anbi2i |
⊢ ( ( 𝜑 ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) ) |
| 10 |
7 9
|
bitr4i |
⊢ ( ( 𝜑 ∧ 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) ↔ ( 𝜑 ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
| 11 |
|
anabs5 |
⊢ ( ( 𝜑 ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ 𝜓 ) ) |
| 12 |
11 8
|
bitri |
⊢ ( ( 𝜑 ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜓 ∧ 𝜑 ) ) |
| 13 |
10 12
|
bitri |
⊢ ( ( 𝜑 ∧ 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) ↔ ( 𝜓 ∧ 𝜑 ) ) |
| 14 |
13
|
imbi1i |
⊢ ( ( ( 𝜑 ∧ 𝜑 ∧ ( 𝜓 ∧ 𝜑 ) ) → 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) ) |
| 15 |
4 14
|
mpbi |
⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) |