Metamath Proof Explorer


Theorem uunT1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015) Proof was revised to accommodate a possible future version of df-tru . (Revised by David A. Wheeler, 8-May-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT1.1 ( ( ⊤ ∧ 𝜑 ) → 𝜓 )
Assertion uunT1 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 uunT1.1 ( ( ⊤ ∧ 𝜑 ) → 𝜓 )
2 orc ( 𝜑 → ( 𝜑 ∨ ¬ 𝜑 ) )
3 tru
4 biid ( 𝜑𝜑 )
5 3 4 2th ( ⊤ ↔ ( 𝜑𝜑 ) )
6 exmid ( 𝜑 ∨ ¬ 𝜑 )
7 6 a1i ( ( 𝜑𝜑 ) → ( 𝜑 ∨ ¬ 𝜑 ) )
8 biidd ( ( 𝜑 ∨ ¬ 𝜑 ) → ( 𝜑𝜑 ) )
9 7 8 impbii ( ( 𝜑𝜑 ) ↔ ( 𝜑 ∨ ¬ 𝜑 ) )
10 5 9 bitri ( ⊤ ↔ ( 𝜑 ∨ ¬ 𝜑 ) )
11 2 10 sylibr ( 𝜑 → ⊤ )
12 11 1 mpancom ( 𝜑𝜓 )