Metamath Proof Explorer


Theorem uunT1p1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT1p1.1 ( ( 𝜑 ∧ ⊤ ) → 𝜓 )
Assertion uunT1p1 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 uunT1p1.1 ( ( 𝜑 ∧ ⊤ ) → 𝜓 )
2 ancom ( ( 𝜑 ∧ ⊤ ) ↔ ( ⊤ ∧ 𝜑 ) )
3 truan ( ( ⊤ ∧ 𝜑 ) ↔ 𝜑 )
4 2 3 bitri ( ( 𝜑 ∧ ⊤ ) ↔ 𝜑 )
5 4 1 sylbir ( 𝜑𝜓 )