Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uunTT1p1.1 | ⊢ ( ( ⊤ ∧ 𝜑 ∧ ⊤ ) → 𝜓 ) | |
| Assertion | uunTT1p1 | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uunTT1p1.1 | ⊢ ( ( ⊤ ∧ 𝜑 ∧ ⊤ ) → 𝜓 ) | |
| 2 | 3ancomb | ⊢ ( ( ⊤ ∧ 𝜑 ∧ ⊤ ) ↔ ( ⊤ ∧ ⊤ ∧ 𝜑 ) ) | |
| 3 | 3anass | ⊢ ( ( ⊤ ∧ ⊤ ∧ 𝜑 ) ↔ ( ⊤ ∧ ( ⊤ ∧ 𝜑 ) ) ) | |
| 4 | anabs5 | ⊢ ( ( ⊤ ∧ ( ⊤ ∧ 𝜑 ) ) ↔ ( ⊤ ∧ 𝜑 ) ) | |
| 5 | 2 3 4 | 3bitri | ⊢ ( ( ⊤ ∧ 𝜑 ∧ ⊤ ) ↔ ( ⊤ ∧ 𝜑 ) ) |
| 6 | truan | ⊢ ( ( ⊤ ∧ 𝜑 ) ↔ 𝜑 ) | |
| 7 | 5 6 | bitri | ⊢ ( ( ⊤ ∧ 𝜑 ∧ ⊤ ) ↔ 𝜑 ) |
| 8 | 7 1 | sylbir | ⊢ ( 𝜑 → 𝜓 ) |