Step |
Hyp |
Ref |
Expression |
1 |
|
uvcff.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
2 |
|
uvcff.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
3 |
|
uvcff.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
4 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
5 |
1 2 3
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
7 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
7 8
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
10 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
11 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑅 ∈ Ring ) |
12 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝐼 ∈ 𝑊 ) |
13 |
|
simplrl |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ∈ 𝐼 ) |
14 |
1 11 12 13 7
|
uvcvv1 |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑖 ) = ( 1r ‘ 𝑅 ) ) |
15 |
|
simplrr |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ∈ 𝐼 ) |
16 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ≠ 𝑗 ) |
17 |
16
|
necomd |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ≠ 𝑖 ) |
18 |
1 11 12 15 13 17 8
|
uvcvv0 |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑖 ) = ( 0g ‘ 𝑅 ) ) |
19 |
10 14 18
|
3netr4d |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑖 ) ≠ ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑖 ) ) |
20 |
|
fveq1 |
⊢ ( ( 𝑈 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑗 ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑖 ) = ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑖 ) ) |
21 |
20
|
necon3i |
⊢ ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑖 ) ≠ ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑖 ) → ( 𝑈 ‘ 𝑖 ) ≠ ( 𝑈 ‘ 𝑗 ) ) |
22 |
19 21
|
syl |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) ∧ 𝑖 ≠ 𝑗 ) → ( 𝑈 ‘ 𝑖 ) ≠ ( 𝑈 ‘ 𝑗 ) ) |
23 |
22
|
ex |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) → ( 𝑖 ≠ 𝑗 → ( 𝑈 ‘ 𝑖 ) ≠ ( 𝑈 ‘ 𝑗 ) ) ) |
24 |
23
|
necon4d |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) → ( ( 𝑈 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
25 |
24
|
ralrimivva |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → ∀ 𝑖 ∈ 𝐼 ∀ 𝑗 ∈ 𝐼 ( ( 𝑈 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
26 |
|
dff13 |
⊢ ( 𝑈 : 𝐼 –1-1→ 𝐵 ↔ ( 𝑈 : 𝐼 ⟶ 𝐵 ∧ ∀ 𝑖 ∈ 𝐼 ∀ 𝑗 ∈ 𝐼 ( ( 𝑈 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
27 |
6 25 26
|
sylanbrc |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → 𝑈 : 𝐼 –1-1→ 𝐵 ) |