Step |
Hyp |
Ref |
Expression |
1 |
|
uvcresum.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
2 |
|
uvcresum.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
3 |
|
uvcresum.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
4 |
|
uvcresum.v |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
2 5 3
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
8 |
7
|
feqmptd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( 𝑎 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑎 ) ) ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
10 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
11 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → 𝑅 ∈ Mnd ) |
13 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
14 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ 𝐼 ) |
15 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
16 |
7
|
ffvelrnda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
17 |
1 2 3
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
18 |
17
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
19 |
18
|
ffvelrnda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑏 ) ∈ 𝐵 ) |
20 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
21 |
2 3 5 15 16 19 4 20
|
frlmvscafval |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑏 ) · ( 𝑈 ‘ 𝑏 ) ) = ( ( 𝐼 × { ( 𝑋 ‘ 𝑏 ) } ) ∘f ( .r ‘ 𝑅 ) ( 𝑈 ‘ 𝑏 ) ) ) |
22 |
16
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) ∧ 𝑎 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
23 |
2 5 3
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑈 ‘ 𝑏 ) ∈ 𝐵 ) → ( 𝑈 ‘ 𝑏 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
24 |
15 19 23
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑏 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
25 |
24
|
ffvelrnda |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
26 |
|
fconstmpt |
⊢ ( 𝐼 × { ( 𝑋 ‘ 𝑏 ) } ) = ( 𝑎 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑏 ) ) |
27 |
26
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝐼 × { ( 𝑋 ‘ 𝑏 ) } ) = ( 𝑎 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑏 ) ) ) |
28 |
24
|
feqmptd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑏 ) = ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) |
29 |
15 22 25 27 28
|
offval2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( 𝐼 × { ( 𝑋 ‘ 𝑏 ) } ) ∘f ( .r ‘ 𝑅 ) ( 𝑈 ‘ 𝑏 ) ) = ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) |
30 |
21 29
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑏 ) · ( 𝑈 ‘ 𝑏 ) ) = ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) |
31 |
2
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑌 ∈ LMod ) |
32 |
31
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑌 ∈ LMod ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → 𝑌 ∈ LMod ) |
34 |
2
|
frlmsca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
35 |
34
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
36 |
35
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
38 |
16 37
|
eleqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑏 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
39 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
40 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
41 |
3 39 4 40
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ ( 𝑋 ‘ 𝑏 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ ( 𝑈 ‘ 𝑏 ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑏 ) · ( 𝑈 ‘ 𝑏 ) ) ∈ 𝐵 ) |
42 |
33 38 19 41
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑏 ) · ( 𝑈 ‘ 𝑏 ) ) ∈ 𝐵 ) |
43 |
30 42
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ∈ 𝐵 ) |
44 |
2 5 3
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ∈ 𝐵 ) → ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
45 |
15 43 44
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
46 |
45
|
fvmptelrn |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐼 ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ∈ ( Base ‘ 𝑅 ) ) |
47 |
46
|
an32s |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ∈ ( Base ‘ 𝑅 ) ) |
48 |
47
|
fmpttd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
49 |
10
|
3ad2ant1 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎 ) → 𝑅 ∈ Ring ) |
50 |
13
|
3ad2ant1 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎 ) → 𝐼 ∈ 𝑊 ) |
51 |
|
simp2 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎 ) → 𝑏 ∈ 𝐼 ) |
52 |
14
|
3ad2ant1 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎 ) → 𝑎 ∈ 𝐼 ) |
53 |
|
simp3 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎 ) → 𝑏 ≠ 𝑎 ) |
54 |
1 49 50 51 52 53 9
|
uvcvv0 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎 ) → ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ) |
55 |
54
|
oveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎 ) → ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) = ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
56 |
16
|
adantlr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
57 |
56
|
3adant3 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎 ) → ( 𝑋 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
58 |
5 20 9
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
59 |
49 57 58
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎 ) → ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
60 |
55 59
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎 ) → ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) = ( 0g ‘ 𝑅 ) ) |
61 |
60 13
|
suppsssn |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑎 } ) |
62 |
5 9 12 13 14 48 61
|
gsumpt |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) = ( ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ‘ 𝑎 ) ) |
63 |
|
fveq2 |
⊢ ( 𝑏 = 𝑎 → ( 𝑋 ‘ 𝑏 ) = ( 𝑋 ‘ 𝑎 ) ) |
64 |
|
fveq2 |
⊢ ( 𝑏 = 𝑎 → ( 𝑈 ‘ 𝑏 ) = ( 𝑈 ‘ 𝑎 ) ) |
65 |
64
|
fveq1d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) = ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑎 ) ) |
66 |
63 65
|
oveq12d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) = ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑎 ) ) ) |
67 |
|
eqid |
⊢ ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) = ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) |
68 |
|
ovex |
⊢ ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑎 ) ) ∈ V |
69 |
66 67 68
|
fvmpt |
⊢ ( 𝑎 ∈ 𝐼 → ( ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ‘ 𝑎 ) = ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑎 ) ) ) |
70 |
69
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ‘ 𝑎 ) = ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑎 ) ) ) |
71 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
72 |
1 10 13 14 71
|
uvcvv1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑎 ) = ( 1r ‘ 𝑅 ) ) |
73 |
72
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑎 ) ) = ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
74 |
7
|
ffvelrnda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
75 |
5 20 71
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑋 ‘ 𝑎 ) ) |
76 |
10 74 75
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑋 ‘ 𝑎 ) ) |
77 |
73 76
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑎 ) ) = ( 𝑋 ‘ 𝑎 ) ) |
78 |
70 77
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ‘ 𝑎 ) = ( 𝑋 ‘ 𝑎 ) ) |
79 |
62 78
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) = ( 𝑋 ‘ 𝑎 ) ) |
80 |
79
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑎 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ) = ( 𝑎 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑎 ) ) ) |
81 |
8 80
|
eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( 𝑎 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ) ) |
82 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
83 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝐼 ∈ 𝑊 ) |
84 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
85 |
|
mptexg |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ∈ V ) |
86 |
85
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ∈ V ) |
87 |
|
funmpt |
⊢ Fun ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) |
88 |
87
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → Fun ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ) |
89 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝑌 ) ∈ V ) |
90 |
2 9 3
|
frlmbasfsupp |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 finSupp ( 0g ‘ 𝑅 ) ) |
91 |
90
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 finSupp ( 0g ‘ 𝑅 ) ) |
92 |
91
|
fsuppimpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
93 |
35
|
eqcomd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( Scalar ‘ 𝑌 ) = 𝑅 ) |
94 |
93
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ ( Scalar ‘ 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) |
95 |
94
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 supp ( 0g ‘ ( Scalar ‘ 𝑌 ) ) ) = ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) |
96 |
|
ssid |
⊢ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) |
97 |
95 96
|
eqsstrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 supp ( 0g ‘ ( Scalar ‘ 𝑌 ) ) ) ⊆ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) |
98 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ ( Scalar ‘ 𝑌 ) ) ∈ V ) |
99 |
7 97 83 98
|
suppssr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ ( 𝐼 ∖ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑋 ‘ 𝑏 ) = ( 0g ‘ ( Scalar ‘ 𝑌 ) ) ) |
100 |
99
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ ( 𝐼 ∖ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑋 ‘ 𝑏 ) · ( 𝑈 ‘ 𝑏 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑌 ) ) · ( 𝑈 ‘ 𝑏 ) ) ) |
101 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝐼 ∖ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) → 𝑏 ∈ 𝐼 ) |
102 |
101 30
|
sylan2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ ( 𝐼 ∖ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑋 ‘ 𝑏 ) · ( 𝑈 ‘ 𝑏 ) ) = ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) |
103 |
32
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ ( 𝐼 ∖ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) → 𝑌 ∈ LMod ) |
104 |
101 19
|
sylan2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ ( 𝐼 ∖ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑈 ‘ 𝑏 ) ∈ 𝐵 ) |
105 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑌 ) ) = ( 0g ‘ ( Scalar ‘ 𝑌 ) ) |
106 |
3 39 4 105 82
|
lmod0vs |
⊢ ( ( 𝑌 ∈ LMod ∧ ( 𝑈 ‘ 𝑏 ) ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑌 ) ) · ( 𝑈 ‘ 𝑏 ) ) = ( 0g ‘ 𝑌 ) ) |
107 |
103 104 106
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ ( 𝐼 ∖ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑌 ) ) · ( 𝑈 ‘ 𝑏 ) ) = ( 0g ‘ 𝑌 ) ) |
108 |
100 102 107
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑏 ∈ ( 𝐼 ∖ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) = ( 0g ‘ 𝑌 ) ) |
109 |
108 83
|
suppss2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) supp ( 0g ‘ 𝑌 ) ) ⊆ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) |
110 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ∈ V ∧ Fun ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ∧ ( 0g ‘ 𝑌 ) ∈ V ) ∧ ( ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ∧ ( ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) supp ( 0g ‘ 𝑌 ) ) ⊆ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) finSupp ( 0g ‘ 𝑌 ) ) |
111 |
86 88 89 92 109 110
|
syl32anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) finSupp ( 0g ‘ 𝑌 ) ) |
112 |
2 3 82 83 83 84 43 111
|
frlmgsum |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 Σg ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ) = ( 𝑎 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ) ) |
113 |
81 112
|
eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( 𝑌 Σg ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ) ) |
114 |
7
|
feqmptd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( 𝑏 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑏 ) ) ) |
115 |
18
|
feqmptd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑈 = ( 𝑏 ∈ 𝐼 ↦ ( 𝑈 ‘ 𝑏 ) ) ) |
116 |
83 16 19 114 115
|
offval2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∘f · 𝑈 ) = ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) · ( 𝑈 ‘ 𝑏 ) ) ) ) |
117 |
30
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) · ( 𝑈 ‘ 𝑏 ) ) ) = ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ) |
118 |
116 117
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∘f · 𝑈 ) = ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ) |
119 |
118
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 Σg ( 𝑋 ∘f · 𝑈 ) ) = ( 𝑌 Σg ( 𝑏 ∈ 𝐼 ↦ ( 𝑎 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝑏 ) ‘ 𝑎 ) ) ) ) ) ) |
120 |
113 119
|
eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( 𝑌 Σg ( 𝑋 ∘f · 𝑈 ) ) ) |