Step |
Hyp |
Ref |
Expression |
1 |
|
uvcfval.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
2 |
|
uvcfval.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
uvcfval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
1 2 3
|
uvcfval |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑈 = ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ) |
5 |
4
|
fveq1d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑈 ‘ 𝐽 ) = ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ‘ 𝐽 ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( 𝑈 ‘ 𝐽 ) = ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ‘ 𝐽 ) ) |
7 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) |
8 |
|
eqeq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝑘 = 𝑗 ↔ 𝑘 = 𝐽 ) ) |
9 |
8
|
ifbid |
⊢ ( 𝑗 = 𝐽 → if ( 𝑘 = 𝑗 , 1 , 0 ) = if ( 𝑘 = 𝐽 , 1 , 0 ) ) |
10 |
9
|
mpteq2dv |
⊢ ( 𝑗 = 𝐽 → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) ) |
11 |
|
simp3 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → 𝐽 ∈ 𝐼 ) |
12 |
|
mptexg |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) ∈ V ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) ∈ V ) |
14 |
7 10 11 13
|
fvmptd3 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ‘ 𝐽 ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) ) |
15 |
6 14
|
eqtrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) → ( 𝑈 ‘ 𝐽 ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) ) |