Metamath Proof Explorer


Theorem uvcvv0

Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcvv.u 𝑈 = ( 𝑅 unitVec 𝐼 )
uvcvv.r ( 𝜑𝑅𝑉 )
uvcvv.i ( 𝜑𝐼𝑊 )
uvcvv.j ( 𝜑𝐽𝐼 )
uvcvv0.k ( 𝜑𝐾𝐼 )
uvcvv0.jk ( 𝜑𝐽𝐾 )
uvcvv0.z 0 = ( 0g𝑅 )
Assertion uvcvv0 ( 𝜑 → ( ( 𝑈𝐽 ) ‘ 𝐾 ) = 0 )

Proof

Step Hyp Ref Expression
1 uvcvv.u 𝑈 = ( 𝑅 unitVec 𝐼 )
2 uvcvv.r ( 𝜑𝑅𝑉 )
3 uvcvv.i ( 𝜑𝐼𝑊 )
4 uvcvv.j ( 𝜑𝐽𝐼 )
5 uvcvv0.k ( 𝜑𝐾𝐼 )
6 uvcvv0.jk ( 𝜑𝐽𝐾 )
7 uvcvv0.z 0 = ( 0g𝑅 )
8 eqid ( 1r𝑅 ) = ( 1r𝑅 )
9 1 8 7 uvcvval ( ( ( 𝑅𝑉𝐼𝑊𝐽𝐼 ) ∧ 𝐾𝐼 ) → ( ( 𝑈𝐽 ) ‘ 𝐾 ) = if ( 𝐾 = 𝐽 , ( 1r𝑅 ) , 0 ) )
10 2 3 4 5 9 syl31anc ( 𝜑 → ( ( 𝑈𝐽 ) ‘ 𝐾 ) = if ( 𝐾 = 𝐽 , ( 1r𝑅 ) , 0 ) )
11 nesym ( 𝐽𝐾 ↔ ¬ 𝐾 = 𝐽 )
12 6 11 sylib ( 𝜑 → ¬ 𝐾 = 𝐽 )
13 12 iffalsed ( 𝜑 → if ( 𝐾 = 𝐽 , ( 1r𝑅 ) , 0 ) = 0 )
14 10 13 eqtrd ( 𝜑 → ( ( 𝑈𝐽 ) ‘ 𝐾 ) = 0 )