Metamath Proof Explorer


Theorem uvcvv1

Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcvv.u 𝑈 = ( 𝑅 unitVec 𝐼 )
uvcvv.r ( 𝜑𝑅𝑉 )
uvcvv.i ( 𝜑𝐼𝑊 )
uvcvv.j ( 𝜑𝐽𝐼 )
uvcvv1.o 1 = ( 1r𝑅 )
Assertion uvcvv1 ( 𝜑 → ( ( 𝑈𝐽 ) ‘ 𝐽 ) = 1 )

Proof

Step Hyp Ref Expression
1 uvcvv.u 𝑈 = ( 𝑅 unitVec 𝐼 )
2 uvcvv.r ( 𝜑𝑅𝑉 )
3 uvcvv.i ( 𝜑𝐼𝑊 )
4 uvcvv.j ( 𝜑𝐽𝐼 )
5 uvcvv1.o 1 = ( 1r𝑅 )
6 eqid ( 0g𝑅 ) = ( 0g𝑅 )
7 1 5 6 uvcvval ( ( ( 𝑅𝑉𝐼𝑊𝐽𝐼 ) ∧ 𝐽𝐼 ) → ( ( 𝑈𝐽 ) ‘ 𝐽 ) = if ( 𝐽 = 𝐽 , 1 , ( 0g𝑅 ) ) )
8 2 3 4 4 7 syl31anc ( 𝜑 → ( ( 𝑈𝐽 ) ‘ 𝐽 ) = if ( 𝐽 = 𝐽 , 1 , ( 0g𝑅 ) ) )
9 eqid 𝐽 = 𝐽
10 iftrue ( 𝐽 = 𝐽 → if ( 𝐽 = 𝐽 , 1 , ( 0g𝑅 ) ) = 1 )
11 9 10 mp1i ( 𝜑 → if ( 𝐽 = 𝐽 , 1 , ( 0g𝑅 ) ) = 1 )
12 8 11 eqtrd ( 𝜑 → ( ( 𝑈𝐽 ) ‘ 𝐽 ) = 1 )