| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uvcvv.u | 
							⊢ 𝑈  =  ( 𝑅  unitVec  𝐼 )  | 
						
						
							| 2 | 
							
								
							 | 
							uvcvv.r | 
							⊢ ( 𝜑  →  𝑅  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							uvcvv.i | 
							⊢ ( 𝜑  →  𝐼  ∈  𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							uvcvv.j | 
							⊢ ( 𝜑  →  𝐽  ∈  𝐼 )  | 
						
						
							| 5 | 
							
								
							 | 
							uvcvv1.o | 
							⊢  1   =  ( 1r ‘ 𝑅 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								1 5 6
							 | 
							uvcvval | 
							⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊  ∧  𝐽  ∈  𝐼 )  ∧  𝐽  ∈  𝐼 )  →  ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐽 )  =  if ( 𝐽  =  𝐽 ,   1  ,  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 8 | 
							
								2 3 4 4 7
							 | 
							syl31anc | 
							⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐽 )  =  if ( 𝐽  =  𝐽 ,   1  ,  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ 𝐽  =  𝐽  | 
						
						
							| 10 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝐽  =  𝐽  →  if ( 𝐽  =  𝐽 ,   1  ,  ( 0g ‘ 𝑅 ) )  =   1  )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mp1i | 
							⊢ ( 𝜑  →  if ( 𝐽  =  𝐽 ,   1  ,  ( 0g ‘ 𝑅 ) )  =   1  )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐽 )  =   1  )  |