| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uvcfval.u | 
							⊢ 𝑈  =  ( 𝑅  unitVec  𝐼 )  | 
						
						
							| 2 | 
							
								
							 | 
							uvcfval.o | 
							⊢  1   =  ( 1r ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							uvcfval.z | 
							⊢  0   =  ( 0g ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							uvcval | 
							⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊  ∧  𝐽  ∈  𝐼 )  →  ( 𝑈 ‘ 𝐽 )  =  ( 𝑘  ∈  𝐼  ↦  if ( 𝑘  =  𝐽 ,   1  ,   0  ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							fveq1d | 
							⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊  ∧  𝐽  ∈  𝐼 )  →  ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐾 )  =  ( ( 𝑘  ∈  𝐼  ↦  if ( 𝑘  =  𝐽 ,   1  ,   0  ) ) ‘ 𝐾 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊  ∧  𝐽  ∈  𝐼 )  ∧  𝐾  ∈  𝐼 )  →  ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐾 )  =  ( ( 𝑘  ∈  𝐼  ↦  if ( 𝑘  =  𝐽 ,   1  ,   0  ) ) ‘ 𝐾 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊  ∧  𝐽  ∈  𝐼 )  ∧  𝐾  ∈  𝐼 )  →  𝐾  ∈  𝐼 )  | 
						
						
							| 8 | 
							
								2
							 | 
							fvexi | 
							⊢  1   ∈  V  | 
						
						
							| 9 | 
							
								3
							 | 
							fvexi | 
							⊢  0   ∈  V  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ifex | 
							⊢ if ( 𝐾  =  𝐽 ,   1  ,   0  )  ∈  V  | 
						
						
							| 11 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑘  =  𝐾  →  ( 𝑘  =  𝐽  ↔  𝐾  =  𝐽 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ifbid | 
							⊢ ( 𝑘  =  𝐾  →  if ( 𝑘  =  𝐽 ,   1  ,   0  )  =  if ( 𝐾  =  𝐽 ,   1  ,   0  ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  𝐼  ↦  if ( 𝑘  =  𝐽 ,   1  ,   0  ) )  =  ( 𝑘  ∈  𝐼  ↦  if ( 𝑘  =  𝐽 ,   1  ,   0  ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							fvmptg | 
							⊢ ( ( 𝐾  ∈  𝐼  ∧  if ( 𝐾  =  𝐽 ,   1  ,   0  )  ∈  V )  →  ( ( 𝑘  ∈  𝐼  ↦  if ( 𝑘  =  𝐽 ,   1  ,   0  ) ) ‘ 𝐾 )  =  if ( 𝐾  =  𝐽 ,   1  ,   0  ) )  | 
						
						
							| 15 | 
							
								7 10 14
							 | 
							sylancl | 
							⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊  ∧  𝐽  ∈  𝐼 )  ∧  𝐾  ∈  𝐼 )  →  ( ( 𝑘  ∈  𝐼  ↦  if ( 𝑘  =  𝐽 ,   1  ,   0  ) ) ‘ 𝐾 )  =  if ( 𝐾  =  𝐽 ,   1  ,   0  ) )  | 
						
						
							| 16 | 
							
								6 15
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊  ∧  𝐽  ∈  𝐼 )  ∧  𝐾  ∈  𝐼 )  →  ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐾 )  =  if ( 𝐾  =  𝐽 ,   1  ,   0  ) )  |