Description: There is no universal vertex if there is no vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 30-Oct-2020) (Proof shortened by AV, 14-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uvtxel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
Assertion | uvtx0 | ⊢ ( 𝑉 = ∅ → ( UnivVtx ‘ 𝐺 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | 1 | uvtxval | ⊢ ( UnivVtx ‘ 𝐺 ) = { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } |
3 | rabeq | ⊢ ( 𝑉 = ∅ → { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } = { 𝑣 ∈ ∅ ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } ) | |
4 | rab0 | ⊢ { 𝑣 ∈ ∅ ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } = ∅ | |
5 | 3 4 | eqtrdi | ⊢ ( 𝑉 = ∅ → { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } = ∅ ) |
6 | 2 5 | syl5eq | ⊢ ( 𝑉 = ∅ → ( UnivVtx ‘ 𝐺 ) = ∅ ) |