| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uvtxel.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							isuvtx.e | 
							⊢ 𝐸  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								1
							 | 
							uvtxval | 
							⊢ ( UnivVtx ‘ 𝐺 )  =  { 𝑣  ∈  𝑉  ∣  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) }  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							⊢ ( 𝐸  =  ∅  →  ( UnivVtx ‘ 𝐺 )  =  { 𝑣  ∈  𝑉  ∣  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) } )  | 
						
						
							| 5 | 
							
								4
							 | 
							neeq1d | 
							⊢ ( 𝐸  =  ∅  →  ( ( UnivVtx ‘ 𝐺 )  ≠  ∅  ↔  { 𝑣  ∈  𝑉  ∣  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) }  ≠  ∅ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							rabn0 | 
							⊢ ( { 𝑣  ∈  𝑉  ∣  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) }  ≠  ∅  ↔  ∃ 𝑣  ∈  𝑉 ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( 𝐸  =  ∅  →  ( { 𝑣  ∈  𝑉  ∣  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) }  ≠  ∅  ↔  ∃ 𝑣  ∈  𝑉 ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							falseral0 | 
							⊢ ( ( ∀ 𝑛 ¬  𝑛  ∈  ∅  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅ )  →  ( 𝑉  ∖  { 𝑣 } )  =  ∅ )  | 
						
						
							| 9 | 
							
								8
							 | 
							ex | 
							⊢ ( ∀ 𝑛 ¬  𝑛  ∈  ∅  →  ( ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅  →  ( 𝑉  ∖  { 𝑣 } )  =  ∅ ) )  | 
						
						
							| 10 | 
							
								
							 | 
							noel | 
							⊢ ¬  𝑛  ∈  ∅  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mpg | 
							⊢ ( ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅  →  ( 𝑉  ∖  { 𝑣 } )  =  ∅ )  | 
						
						
							| 12 | 
							
								
							 | 
							ssdif0 | 
							⊢ ( 𝑉  ⊆  { 𝑣 }  ↔  ( 𝑉  ∖  { 𝑣 } )  =  ∅ )  | 
						
						
							| 13 | 
							
								
							 | 
							sssn | 
							⊢ ( 𝑉  ⊆  { 𝑣 }  ↔  ( 𝑉  =  ∅  ∨  𝑉  =  { 𝑣 } ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ne0i | 
							⊢ ( 𝑣  ∈  𝑉  →  𝑉  ≠  ∅ )  | 
						
						
							| 15 | 
							
								
							 | 
							eqneqall | 
							⊢ ( 𝑉  =  ∅  →  ( 𝑉  ≠  ∅  →  𝑉  =  { 𝑣 } ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl5 | 
							⊢ ( 𝑉  =  ∅  →  ( 𝑣  ∈  𝑉  →  𝑉  =  { 𝑣 } ) )  | 
						
						
							| 17 | 
							
								
							 | 
							ax-1 | 
							⊢ ( 𝑉  =  { 𝑣 }  →  ( 𝑣  ∈  𝑉  →  𝑉  =  { 𝑣 } ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							jaoi | 
							⊢ ( ( 𝑉  =  ∅  ∨  𝑉  =  { 𝑣 } )  →  ( 𝑣  ∈  𝑉  →  𝑉  =  { 𝑣 } ) )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							sylbi | 
							⊢ ( 𝑉  ⊆  { 𝑣 }  →  ( 𝑣  ∈  𝑉  →  𝑉  =  { 𝑣 } ) )  | 
						
						
							| 20 | 
							
								12 19
							 | 
							sylbir | 
							⊢ ( ( 𝑉  ∖  { 𝑣 } )  =  ∅  →  ( 𝑣  ∈  𝑉  →  𝑉  =  { 𝑣 } ) )  | 
						
						
							| 21 | 
							
								11 20
							 | 
							syl | 
							⊢ ( ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅  →  ( 𝑣  ∈  𝑉  →  𝑉  =  { 𝑣 } ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							impcom | 
							⊢ ( ( 𝑣  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅ )  →  𝑉  =  { 𝑣 } )  | 
						
						
							| 23 | 
							
								
							 | 
							vsnid | 
							⊢ 𝑣  ∈  { 𝑣 }  | 
						
						
							| 24 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝑉  =  { 𝑣 }  →  ( 𝑣  ∈  𝑉  ↔  𝑣  ∈  { 𝑣 } ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							mpbiri | 
							⊢ ( 𝑉  =  { 𝑣 }  →  𝑣  ∈  𝑉 )  | 
						
						
							| 26 | 
							
								
							 | 
							ralel | 
							⊢ ∀ 𝑛  ∈  ∅ 𝑛  ∈  ∅  | 
						
						
							| 27 | 
							
								
							 | 
							difeq1 | 
							⊢ ( 𝑉  =  { 𝑣 }  →  ( 𝑉  ∖  { 𝑣 } )  =  ( { 𝑣 }  ∖  { 𝑣 } ) )  | 
						
						
							| 28 | 
							
								
							 | 
							difid | 
							⊢ ( { 𝑣 }  ∖  { 𝑣 } )  =  ∅  | 
						
						
							| 29 | 
							
								27 28
							 | 
							eqtrdi | 
							⊢ ( 𝑉  =  { 𝑣 }  →  ( 𝑉  ∖  { 𝑣 } )  =  ∅ )  | 
						
						
							| 30 | 
							
								29
							 | 
							raleqdv | 
							⊢ ( 𝑉  =  { 𝑣 }  →  ( ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅  ↔  ∀ 𝑛  ∈  ∅ 𝑛  ∈  ∅ ) )  | 
						
						
							| 31 | 
							
								26 30
							 | 
							mpbiri | 
							⊢ ( 𝑉  =  { 𝑣 }  →  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅ )  | 
						
						
							| 32 | 
							
								25 31
							 | 
							jca | 
							⊢ ( 𝑉  =  { 𝑣 }  →  ( 𝑣  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅ ) )  | 
						
						
							| 33 | 
							
								22 32
							 | 
							impbii | 
							⊢ ( ( 𝑣  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅ )  ↔  𝑉  =  { 𝑣 } )  | 
						
						
							| 34 | 
							
								33
							 | 
							a1i | 
							⊢ ( 𝐸  =  ∅  →  ( ( 𝑣  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅ )  ↔  𝑉  =  { 𝑣 } ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							exbidv | 
							⊢ ( 𝐸  =  ∅  →  ( ∃ 𝑣 ( 𝑣  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅ )  ↔  ∃ 𝑣 𝑉  =  { 𝑣 } ) )  | 
						
						
							| 36 | 
							
								2
							 | 
							eqeq1i | 
							⊢ ( 𝐸  =  ∅  ↔  ( Edg ‘ 𝐺 )  =  ∅ )  | 
						
						
							| 37 | 
							
								
							 | 
							nbgr0edg | 
							⊢ ( ( Edg ‘ 𝐺 )  =  ∅  →  ( 𝐺  NeighbVtx  𝑣 )  =  ∅ )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							sylbi | 
							⊢ ( 𝐸  =  ∅  →  ( 𝐺  NeighbVtx  𝑣 )  =  ∅ )  | 
						
						
							| 39 | 
							
								38
							 | 
							eleq2d | 
							⊢ ( 𝐸  =  ∅  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 )  ↔  𝑛  ∈  ∅ ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							rexralbidv | 
							⊢ ( 𝐸  =  ∅  →  ( ∃ 𝑣  ∈  𝑉 ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 )  ↔  ∃ 𝑣  ∈  𝑉 ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅ ) )  | 
						
						
							| 41 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑣  ∈  𝑉 ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅  ↔  ∃ 𝑣 ( 𝑣  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅ ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							bitrdi | 
							⊢ ( 𝐸  =  ∅  →  ( ∃ 𝑣  ∈  𝑉 ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 )  ↔  ∃ 𝑣 ( 𝑣  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ∅ ) ) )  | 
						
						
							| 43 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝑉  ∈  V  | 
						
						
							| 44 | 
							
								
							 | 
							hash1snb | 
							⊢ ( 𝑉  ∈  V  →  ( ( ♯ ‘ 𝑉 )  =  1  ↔  ∃ 𝑣 𝑉  =  { 𝑣 } ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							mp1i | 
							⊢ ( 𝐸  =  ∅  →  ( ( ♯ ‘ 𝑉 )  =  1  ↔  ∃ 𝑣 𝑉  =  { 𝑣 } ) )  | 
						
						
							| 46 | 
							
								35 42 45
							 | 
							3bitr4d | 
							⊢ ( 𝐸  =  ∅  →  ( ∃ 𝑣  ∈  𝑉 ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 )  ↔  ( ♯ ‘ 𝑉 )  =  1 ) )  | 
						
						
							| 47 | 
							
								5 7 46
							 | 
							3bitrd | 
							⊢ ( 𝐸  =  ∅  →  ( ( UnivVtx ‘ 𝐺 )  ≠  ∅  ↔  ( ♯ ‘ 𝑉 )  =  1 ) )  |