Metamath Proof Explorer


Theorem uvtx2vtx1edg

Description: If a graph has two vertices, and there is an edge between the vertices, then each vertex is universal. (Contributed by AV, 1-Nov-2020) (Revised by AV, 25-Mar-2021) (Proof shortened by AV, 14-Feb-2022)

Ref Expression
Hypotheses uvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
isuvtx.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion uvtx2vtx1edg ( ( ( ♯ ‘ 𝑉 ) = 2 ∧ 𝑉𝐸 ) → ∀ 𝑣𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 uvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isuvtx.e 𝐸 = ( Edg ‘ 𝐺 )
3 1 2 nbgr2vtx1edg ( ( ( ♯ ‘ 𝑉 ) = 2 ∧ 𝑉𝐸 ) → ∀ 𝑣𝑉𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) )
4 1 uvtxel ( 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝑣𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) )
5 4 a1i ( ( ( ♯ ‘ 𝑉 ) = 2 ∧ 𝑉𝐸 ) → ( 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝑣𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) )
6 5 baibd ( ( ( ( ♯ ‘ 𝑉 ) = 2 ∧ 𝑉𝐸 ) ∧ 𝑣𝑉 ) → ( 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) )
7 6 ralbidva ( ( ( ♯ ‘ 𝑉 ) = 2 ∧ 𝑉𝐸 ) → ( ∀ 𝑣𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ∀ 𝑣𝑉𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) )
8 3 7 mpbird ( ( ( ♯ ‘ 𝑉 ) = 2 ∧ 𝑉𝐸 ) → ∀ 𝑣𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) )