| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uvtxel.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							isuvtx.e | 
							⊢ 𝐸  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							nbuhgr2vtx1edgb | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  2 )  →  ( 𝑉  ∈  𝐸  ↔  ∀ 𝑣  ∈  𝑉 ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) ) )  | 
						
						
							| 4 | 
							
								1
							 | 
							uvtxel | 
							⊢ ( 𝑣  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ( 𝑣  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  2 )  →  ( 𝑣  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ( 𝑣  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							baibd | 
							⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  2 )  ∧  𝑣  ∈  𝑉 )  →  ( 𝑣  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							bicomd | 
							⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  2 )  ∧  𝑣  ∈  𝑉 )  →  ( ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 )  ↔  𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ralbidva | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  2 )  →  ( ∀ 𝑣  ∈  𝑉 ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 )  ↔  ∀ 𝑣  ∈  𝑉 𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							bitrd | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  2 )  →  ( 𝑉  ∈  𝐸  ↔  ∀ 𝑣  ∈  𝑉 𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) )  |