Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxel.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
sneq |
⊢ ( 𝑣 = 𝑁 → { 𝑣 } = { 𝑁 } ) |
3 |
2
|
difeq2d |
⊢ ( 𝑣 = 𝑁 → ( 𝑉 ∖ { 𝑣 } ) = ( 𝑉 ∖ { 𝑁 } ) ) |
4 |
|
oveq2 |
⊢ ( 𝑣 = 𝑁 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝑁 ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝑣 = 𝑁 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
6 |
3 5
|
raleqbidv |
⊢ ( 𝑣 = 𝑁 → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
7 |
1
|
uvtxval |
⊢ ( UnivVtx ‘ 𝐺 ) = { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } |
8 |
6 7
|
elrab2 |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝑁 ∈ 𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) |