Metamath Proof Explorer


Theorem uvtxel

Description: A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 29-Oct-2020) (Revised by AV, 14-Feb-2022)

Ref Expression
Hypothesis uvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion uvtxel ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝑁𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 uvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
2 sneq ( 𝑣 = 𝑁 → { 𝑣 } = { 𝑁 } )
3 2 difeq2d ( 𝑣 = 𝑁 → ( 𝑉 ∖ { 𝑣 } ) = ( 𝑉 ∖ { 𝑁 } ) )
4 oveq2 ( 𝑣 = 𝑁 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝑁 ) )
5 4 eleq2d ( 𝑣 = 𝑁 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) )
6 3 5 raleqbidv ( 𝑣 = 𝑁 → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) )
7 1 uvtxval ( UnivVtx ‘ 𝐺 ) = { 𝑣𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) }
8 6 7 elrab2 ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝑁𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) )