| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uvtxel.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | sneq | ⊢ ( 𝑣  =  𝑁  →  { 𝑣 }  =  { 𝑁 } ) | 
						
							| 3 | 2 | difeq2d | ⊢ ( 𝑣  =  𝑁  →  ( 𝑉  ∖  { 𝑣 } )  =  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑣  =  𝑁  →  ( 𝐺  NeighbVtx  𝑣 )  =  ( 𝐺  NeighbVtx  𝑁 ) ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( 𝑣  =  𝑁  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 )  ↔  𝑛  ∈  ( 𝐺  NeighbVtx  𝑁 ) ) ) | 
						
							| 6 | 3 5 | raleqbidv | ⊢ ( 𝑣  =  𝑁  →  ( ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 )  ↔  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑁 ) ) ) | 
						
							| 7 | 1 | uvtxval | ⊢ ( UnivVtx ‘ 𝐺 )  =  { 𝑣  ∈  𝑉  ∣  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) } | 
						
							| 8 | 6 7 | elrab2 | ⊢ ( 𝑁  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ( 𝑁  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑁 ) ) ) |