Database
GRAPH THEORY
Undirected graphs
Neighbors, complete graphs and universal vertices
Universal vertices
uvtxnbgr
Metamath Proof Explorer
Description: A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens , 14-Oct-2017) (Revised by AV , 3-Nov-2020)
(Revised by AV , 23-Mar-2021)
Ref
Expression
Hypothesis
uvtxnbgr.v
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
Assertion
uvtxnbgr
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) )
Proof
Step
Hyp
Ref
Expression
1
uvtxnbgr.v
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
2
1
nbgrssovtx
⊢ ( 𝐺 NeighbVtx 𝑁 ) ⊆ ( 𝑉 ∖ { 𝑁 } )
3
2
a1i
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝑁 ) ⊆ ( 𝑉 ∖ { 𝑁 } ) )
4
1
uvtxnbgrss
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝑉 ∖ { 𝑁 } ) ⊆ ( 𝐺 NeighbVtx 𝑁 ) )
5
3 4
eqssd
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) )