Metamath Proof Explorer


Theorem uvtxnbgr

Description: A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 3-Nov-2020) (Revised by AV, 23-Mar-2021)

Ref Expression
Hypothesis uvtxnbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion uvtxnbgr ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) )

Proof

Step Hyp Ref Expression
1 uvtxnbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 nbgrssovtx ( 𝐺 NeighbVtx 𝑁 ) ⊆ ( 𝑉 ∖ { 𝑁 } )
3 2 a1i ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝑁 ) ⊆ ( 𝑉 ∖ { 𝑁 } ) )
4 1 uvtxnbgrss ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝑉 ∖ { 𝑁 } ) ⊆ ( 𝐺 NeighbVtx 𝑁 ) )
5 3 4 eqssd ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) )