| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uvtxnbgr.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								1
							 | 
							uvtxnbgr | 
							⊢ ( 𝑁  ∈  ( UnivVtx ‘ 𝐺 )  →  ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑉  ∖  { 𝑁 } ) )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑉  ∖  { 𝑁 } ) )  →  𝑁  ∈  𝑉 )  | 
						
						
							| 4 | 
							
								
							 | 
							raleleq | 
							⊢ ( ( 𝑉  ∖  { 𝑁 } )  =  ( 𝐺  NeighbVtx  𝑁 )  →  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑁 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eqcoms | 
							⊢ ( ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑉  ∖  { 𝑁 } )  →  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑁 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑉  ∖  { 𝑁 } ) )  →  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑁 ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							uvtxel | 
							⊢ ( 𝑁  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ( 𝑁  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑁 ) ) )  | 
						
						
							| 8 | 
							
								3 6 7
							 | 
							sylanbrc | 
							⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑉  ∖  { 𝑁 } ) )  →  𝑁  ∈  ( UnivVtx ‘ 𝐺 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ex | 
							⊢ ( 𝑁  ∈  𝑉  →  ( ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑉  ∖  { 𝑁 } )  →  𝑁  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							impbid2 | 
							⊢ ( 𝑁  ∈  𝑉  →  ( 𝑁  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑉  ∖  { 𝑁 } ) ) )  |