Metamath Proof Explorer


Theorem uvtxnbgrss

Description: A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 30-Oct-2020)

Ref Expression
Hypothesis uvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion uvtxnbgrss ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝑉 ∖ { 𝑁 } ) ⊆ ( 𝐺 NeighbVtx 𝑁 ) )

Proof

Step Hyp Ref Expression
1 uvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 vtxnbuvtx ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) )
3 dfss3 ( ( 𝑉 ∖ { 𝑁 } ) ⊆ ( 𝐺 NeighbVtx 𝑁 ) ↔ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) )
4 2 3 sylibr ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝑉 ∖ { 𝑁 } ) ⊆ ( 𝐺 NeighbVtx 𝑁 ) )