Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxel.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
vtxnbuvtx |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) |
3 |
|
eleq1w |
⊢ ( 𝑛 = 𝑣 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ↔ 𝑣 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
4 |
3
|
rspcva |
⊢ ( ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → 𝑣 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) |
5 |
|
nbgrsym |
⊢ ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑁 ) ↔ 𝑁 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) |
6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑁 ) ↔ 𝑁 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
7 |
4 6
|
syl5ibcom |
⊢ ( ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑁 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
8 |
7
|
expcom |
⊢ ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑁 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) ) |
9 |
8
|
com23 |
⊢ ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) → ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑁 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) ) |
10 |
2 9
|
mpcom |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑁 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
11 |
10
|
ralrimiv |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑁 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) |