Metamath Proof Explorer


Theorem uvtxnbvtxm1

Description: A universal vertex has n - 1 neighbors in a finite simple graph with n vertices. A biconditional version of nbusgrvtxm1uvtx resp. uvtxnm1nbgr . (Contributed by Alexander van der Vekens, 14-Jul-2018) (Revised by AV, 16-Dec-2020)

Ref Expression
Hypothesis uvtxnm1nbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion uvtxnbvtxm1 ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈𝑉 ) → ( 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) )

Proof

Step Hyp Ref Expression
1 uvtxnm1nbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 uvtxnm1nbgr ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) )
3 2 ex ( 𝐺 ∈ FinUSGraph → ( 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) )
4 3 adantr ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈𝑉 ) → ( 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) )
5 1 nbusgrvtxm1uvtx ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) ) )
6 4 5 impbid ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈𝑉 ) → ( 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) )