Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxnm1nbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
uvtxnbgr |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ) → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) ) |
4 |
3
|
fveq2d |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑁 ) ) = ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) ) |
5 |
1
|
fusgrvtxfi |
⊢ ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin ) |
6 |
1
|
uvtxisvtx |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑁 ∈ 𝑉 ) |
7 |
6
|
snssd |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → { 𝑁 } ⊆ 𝑉 ) |
8 |
|
hashssdif |
⊢ ( ( 𝑉 ∈ Fin ∧ { 𝑁 } ⊆ 𝑉 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) ) |
9 |
5 7 8
|
syl2an |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) ) |
10 |
|
hashsng |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( ♯ ‘ { 𝑁 } ) = 1 ) |
11 |
10
|
adantl |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ) → ( ♯ ‘ { 𝑁 } ) = 1 ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑉 ) − ( ♯ ‘ { 𝑁 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
13 |
4 9 12
|
3eqtrd |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑁 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |